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Preface

In part, our motivation for writing this book 

is the classes that we have taught on the subject at our respective universities, 

Tufts (A. E.) and Central Connecticut State (T. R.). Many, but not all, of our 

students were science fi ction buff s. They ranged from present or prospective 

physics majors to fi ne arts majors; several of the latter did very well and were 

among the most fun to teach. The courses aff orded us an opportunity, unusual 

for theoretical physicists, to give undergraduates some access to our own re-

search, using essentially no mathematics beyond high school algebra. We are 

grateful to all of the students in those classes over the years for their enthusi-

asm and intellectual stimulation.

Our aim here was to write a book for people with diff erent levels of math 

and physics backgrounds, skills, and interests. Since we believe that what cur-

rently is on off er is either too watered down or too sensationalistic, we decided 

to try our hand. The level of this book is intended for a person who is perhaps 

a Star Trek fan or who likes to read Scientifi c American occasionally, but who fi nds 

it not detailed enough for a good understanding of the subject matter. We as-

sume that our reader knows high school algebra, but no knowledge of higher 

mathematics is assumed. A basic physics course, although helpful, is not nec-

essary for understanding. However, the reader will need to expend some intel-

lectual eff ort in grappling with the concepts to come. We realize that not every 

reader will be interested in the same level of detail. Therefore many (although 

not all!) of the mathematical details have been placed in appendixes, for those 

who are interested in more “meat.” Our feeling is that even readers who want 

to “skip the math” will still fi nd plenty of topics to interest them in our book. 

So, although we do not expect every reader to understand every single item in 

the book, we have aimed to provide a stimulating experience for all readers. 

Interactive Quicktime demonstrations that illustrate some of the concepts in 

the book can be found at http://press.uchicago.edu/sites/timewarp/.
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1
Introduction

A s humans, we have always been beck-

   oned by faraway times and places. Ever 

since man realized what the stars were, we have wondered whether we would 

ever be able to travel to them. Such thoughts have provided fertile ground over 

the years for science fi ction writers seeking interesting plotlines. But the vast 

distances separating astronomical objects forced authors to invent various 

imaginary devices that would allow their characters to travel at speeds greater 

than the speed of light. (The speed of light in empty space, generally denoted 

as c by physicists, is 186,000 miles/second.) To give you an idea of the enor-

mous distances between the stars, let’s start with a few facts. The nearest star, 

Proxima Centauri (in the Alpha Centauri star system) is about 4 light-years 

away. A light-year is the distance that light travels in a year, about 6 trillion 

miles. So the nearest star is about 24 trillion miles away. It would take a beam 

of light traveling 186,000 miles per second, or a radio message, which would 

travel at the same speed, 4 years to get there.

On an even greater scale, the distance across our Milky Way galaxy is ap-

proximately 100,000 light-years. Our nearby neighbor galaxy, Andromeda, is 

about 2,000,000 light-years away. With present technology, it would take some 

tens of thousands of years just to send a probe, traveling at a speed far less 

than c, to the nearest star. It’s not surprising then that science fi ction writers 

have long imagined some sort of “shortcut” between the stars involving travel 

faster than the speed of light. Otherwise it is diffi  cult to see how one could 

have the kinds of “federations” or “galactic empires” that are so prominent in 

science fi ction. Without shortcuts, the universe is a very big place.

And what about time, that most mysterious feature of the universe? Why is 

the past diff erent from the future? Why can we remember the past and not the 

future? Is it possible that the past and future are “places” that can be visited, 

just like other regions of space? If so, how could we do it?
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This book examines the possibility of time travel and of space travel at 

speeds exceeding the speed of light, in light of physics research conducted 

during the last twenty years or so. The ideas of faster-than-light travel and time 

travel have long existed in popular imagination. What you may not know is that 

some physicists study these concepts very seriously—not just as a “what might 

someday be possible” question, but also as a “what can we learn from such 

studies about basic physics” question.

Science fi ction television and movie series, such as Star Trek, contain many 

fi ctional examples of faster-than-light travel. Captains Kirk or Picard give the 

helmsman of the starship Enterprise an order like, “All ahead warp factor 2.” 

We’re never told quite what that means, but we’re clearly meant to understand 

that it means some speed greater than the speed of light (c). Some fans have 

speculated that it refers to a speed of 22c, or four times the speed of light. These 

speeds are supposed to be achieved by making use of the Enterprise’s “warp 

drive.” This term was never explained and seems to be merely a nice example of 

the good “technobabble” usually necessary in a piece of science fi ction to make 

things sound “scientifi c.” But by chance—or good insight—Star Trek’s “warp 

drive” turns out to be an apt description of one conceivable mechanism for 

traveling at faster-than-light speed, as we shall discuss later in some detail. For 

this reason, we will use the term “warp drive” from now on to mean a capacity 

for faster-than-light travel.

By analogy with the term “supersonic” for speeds exceeding the speed of 

sound in air, speeds greater than the speed of light are often referred to in 

physics as “superluminal speeds.” However, superluminal travel seems to in-

volve a violation of the known laws of physics, in this case, Einstein’s special 

theory of relativity. Special relativity has built into it the existence of a “light 

barrier.” The terminology is intended to be reminiscent of the sound barrier 

encountered by aircraft when their speed reaches that of sound and which 

some, at one time, thought might prevent supersonic fl ight. But whereas it 

proved possible to overcome the sound barrier without violating any physical 

laws, special relativity seems to imply that superluminal travel, that is, an ac-

tual warp drive, is absolutely forbidden, no matter how powerful some future 

spaceship’s engines might be.

Time travel also abounds in science fi ction. For example, the characters in 

a story may fi nd themselves traveling back to our time period and becoming 

involved with a NASA space launch on Earth, perhaps after passing through a 

“time gate.” Often in science fi ction, the occurrence of backward time travel 

seems to have nothing to do with the existence of a warp drive for spaceships; 
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the two phenomena of superluminal travel and time travel appear quite unre-

lated. In fact, we shall see that there is a direct connection between the two.

Science fi ction writers often provide imaginative answers to questions be-

ginning with the word “what.”—“What technological developments might oc-

cur in the future?” —but in general, science fi ction does not provide answers to 

the question of “how”. It usually provides no practical guidance as to just how 

some particular technological advance might be achieved. Scientists and engi-

neers by contrast work to answer “how,” attempting to extend our knowledge 

of the laws of nature and to apply this knowledge creatively in new situations.

The fact that science, in due course, frequently has provided answers as to 

how some imagined technological advance can actually be achieved may tend 

to lead to an expectation that this will always occur. But this is not necessarily 

true. Well-established laws of physics often take the form of asserting that 

certain physical phenomena are absolutely forbidden. For example, as far as 

we know, no matter what occurs, the total amount of energy of all kinds in the 

universe does not change. That is, in the language of physics, energy is said to 

be “conserved,” as you were probably told in your high school and university 

science courses.

Although works of science fi ction usually cannot address the “how” ques-

tions, they often serve science through their explorations of “what.” By envi-

sioning conceivable phenomena outside of our everyday experience, they may 

off er science possible avenues of experimentation. Some of the chapters of this 

book contain suggested science fi ction readings or fi lms that relate to the sub-

ject matter of the chapter and can prove helpful in visualizing various scenarios 

which might occur if, for example, time travel became possible.

A writer of science fi ction is at liberty to imagine a world in which humans 

have learned to create energy in unlimited quantities by means of some imagi-

nary device. However, a physicist will say that, according to well-established 

physical laws, this will not be possible, no matter how clever future scientists 

and engineers may be. In other words, sometimes the answer to the question 

“How can such and such a thing be done?” is “In all probability, it can’t.” We 

must be prepared for the possibility that we will encounter such situations.

Unless we specify otherwise, the term “time travel” will normally mean time 

travel into the past, which is where the most interesting problems arise. As a 

convenient shorthand we will refer to a device that would allow this as a “time 

machine” and to a process of developing a capacity for backward time travel 

as “building a time machine.” This implies the possibility that you could go 

back in time and meet a younger version of yourself. In physics jargon, such a 
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circular path in space and time is referred to as a “closed timelike curve.” It is 

closed because you can return to your starting point in both space and time. 

It is called “timelike” because the time changes from point to point along the 

curve. The statement that a closed timelike curve exists is just a fancy way of 

saying that you have a time machine.

It would seem that time travel into the past should also be impossible out-

side the world of science fi ction simply on the basis of ordinary common sense 

because of the paradoxes to which it seems to lead. These are typifi ed by what 

is often called the “grandfather paradox.” According to this scenario, were it 

possible to travel into the past, a time traveler could in principle murder his 

own grandfather before the birth of his mother. In this case he would never be 

born, in which case he would never travel back in time to murder his grand-

father, in which case he would be born and murder his grandfather, and so 

on and so on forever. In summary, the entrance of the grandson into the time 

machine prevents his entrance into the machine. Such paradoxical situations 

that involve logical contradictions are called “inconsistent causal loops.” The 

laws of physics should allow one to predict that, in a given situation, a certain 

event either does or does not occur. Hence, they must be such that inconsistent 

causal loops are not allowed.

For some time, warp drives and time machines were generally believed to be 

confi ned to the realm of science fi ction because of the special relativistic light 

barrier and the paradoxes involved with backward time travel. Over the past 

several decades, the possibility that superluminal travel and backward time 

travel might actually be possible, at least in principle, has become a subject 

of serious discussion among physicists. Much of this change is due to an ar-

ticle entitled “Wormholes, Time Machines, and the Weak Energy Condition,” 

by three physicists at the California Institute of Technology: M. S. Morris, 

K. S. Thorne, and U. Yurtsever. Their article was published in 1988 in the pres-

tigious journal Physical Review Letters. (You will learn something of the meaning 

of that strange-sounding phrase “weak energy condition” later.) The senior 

author, K. S. Thorne (who is the Feynman Professor of Theoretical Physics at 

Caltech), is one of the world’s foremost experts on the general theory of rela-

tivity, which is Einstein’s theory of gravity. The discovery of the latter theory 

followed that of special relativity by about a decade. General relativity off ers 

potential loopholes that might allow a suffi  ciently advanced civilization to fi nd 

a way around the light barrier.

As far as time travel into the future is concerned, it is well understood in 

physics—and has been for a good part of a century—that it is not only pos-
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sible but also, indeed, rather commonplace. Here, by “time travel into the fu-

ture,” we implicitly mean at a rate greater than the normal pace of everyday life. 

Forward time travel is, in fact, directly relevant to observable physics, since it 

is seen to occur for subatomic particles at high energy accelerators, such as 

that at Fermi National Laboratory, or the new Large Hadron Collider (LHC) at 

the European Organization for Nuclear Research (CERN) in Geneva, where 

such particles attain speeds very close to the speed of light. (Sending larger 

masses, such as people or spaceships, a signifi cant distance into the future, 

while possible in principle, requires amounts of energy which are at present 

prohibitively large.)

We begin the exploration of forward time travel with a brief discussion of 

the meaning of time itself in physics. We will then have to do some thinking 

about just what the phrase “time travel” means. For example, what would we 

expect to observe if we traveled in time, and what would non–time travelers 

around us see? Like a number of things in this book, answering these ques-

tions requires stretching the imagination to envision phenomena that you have 

never actually encountered or probably even thought carefully about.

After that, you will learn the fundamentals of Einstein’s special theory 

of relativity. The discovery of special relativity is one of the great intellectual 

achievements in the history of physics, and yet the theory involves only rather 

simple ideas and no mathematics beyond high school algebra. Again, however, 

to understand what is going on you have to be prepared to stretch your think-

ing beyond what you observe in your everyday life. Special relativity describes 

the behavior of objects when their speed approaches the speed of light. As we 

will see, special relativity leaves no doubt that forward time travel is possible. 

We will discuss one of the most remarkable predictions of special relativity, 

namely, that a clock appears to run slower when it is moving relative to a sta-

tionary observer, an eff ect called “time dilation.” This eff ect becomes signifi -

cant when the speed of the clock approaches c. Time dilation is closely related 

to what is called the “twin paradox.” This is essentially the same phenomenon 

that is responsible for the “forward time travel” seen to occur for elementary 

particles at Fermilab and the LHC.

At fi rst glance, faster-than-light travel might seem to be a natural exten-

sion of ordinary travel at sub-light speeds, just requiring the development of 

much more powerful engines. Space travel in many science fi ction stories of 

the 1930s and ’40s involved no violations of fundamental laws of physics. The 

speculation of science fi ction began to be realized in practice about a quarter 

of a century later, when Neil Armstrong took his “one small step” onto the 
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surface of the moon. However, superluminal travel seems to involve a violation 

of the known laws of physics, in this case, the special theory of relativity, with 

its light barrier.

In the absence of a time machine, everyday observations tell us that the laws 

of physics are such that eff ects always follow causes in time. Thus the eff ect 

cannot turn around and prevent the cause, and no causal loop can occur. This 

is no longer true in the presence of a time machine, since then a time traveler 

can observe the eff ect and then travel back in time to block the cause. There-

fore it would appear that the existence of time machines—that is, backward 

time travel—is forbidden just by common sense. Moreover, we will see that in 

special relativity, backward time travel becomes closely connected to superlu-

minal travel, so that the same “common sense” objections can be raised to the 

possibility of a warp drive, in addition to the light barrier problem.

Einstein’s theory of gravity, general relativity, introduces a new ingredient 

into the mix. It combines space and time into a common structure called “space-

time.” Space and time can be dynamical—spacetime has a structure that can 

curve and warp. Einstein showed that the warping of the geometry of space and 

time due to matter and energy is responsible for what we perceive as gravity. 

We will introduce you to some of the ideas of general relativity and its implica-

tions. One consequence that we will discuss is the black hole, which is believed 

to be the ultimate fate of the most massive stars. When such a star dies, it 

implodes on itself to the point where light emitted from the star is pulled right 

back in, rendering the object invisible. We will point out that sitting next to (or 

orbiting) a black hole also aff ords a possible means of forward time travel that 

is diff erent from the time dilation of moving clocks discussed earlier.

As we will fi nd, the laws of general relativity at least suggest that it is pos-

sible to curve, or warp, space in such a way as to produce a shortcut through 

space, and perhaps even time, which is known to general relativists as a 

“wormhole.” Wormholes are one of the staple features of several science fi c-

tion series: Star Trek Deep Space Nine, Farscape, Stargate SG1, and Sliders. Several 

years after the article by Morris, Thorne, and Yurtsever, a possibility for actually 

constructing a warp drive was presented in a 1994 article by Miguel Alcubierre, 

then at the University of Cardiff  in the United Kingdom, which was published 

in the journal Classical and Quantum Gravity. By making use of general relativ-

ity, Alcubierre exhibited a way in which empty spacetime could be curved, or 

warped, in such a way as to contain a “bubble” moving at an arbitrarily high 

speed as seen from outside the bubble. One might call such a thing a “warp 

bubble.” If one could fi nd a way of enclosing a spaceship in such a bubble, 
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the spaceship would move at superluminal speed, for example, as seen from 

a planet outside the bubble, thus achieving an actual realization of a “warp 

drive.” Another kind of warp drive was suggested by Serguei Krasnikov at 

the Central Astronomical Observatory in St. Petersberg, Russia in 1997. This 

“Krasnikov tube” is eff ectively a tube of distorted spacetime that connects the 

earth to, say, a distant star. From what we have said before about the connec-

tion between superluminal travel and backward time travel, one would expect 

that wormholes and warp bubbles could be used to construct time machines. 

This is indeed the case, as we will also show.

What is known about how one might actually build a wormhole or a warp 

bubble? We’ll see that, while not hopeless, the prospect doesn’t appear very 

promising. One disadvantage they all share is that they require a most un-

usual form of matter and energy, called “exotic matter,” or, “negative energy.” 

(In view of Einstein’s famous equivalence relation between mass and energy, 

E = mc2, we will frequently use the two terms “mass” and “energy” interchange-

ably.) A theorem by Stephen Hawking (the former Lucasian Professor of Math-

ematics at Cambridge University, the same chair once held by Isaac Newton) 

shows that, loosely speaking, if you want to build a time machine in a fi nite 

region of time and space, the presence of some exotic matter is required. As it 

turns out, the laws of physics actually allow the existence of exotic matter or 

negative energy. However, those same laws also appear to place severe restric-

tions on what you can do with it. Over the last fi fteen years, there has been 

a great deal of work, much of it by Larry Ford of Tufts University and one of 

the authors (Tom), on the question of what restrictions, if any, the laws of 

physics impose on negative energy. We will describe some of what has been 

learned and its implications for the likelihood of constructing wormholes and 

warp drives.

One might well think that the potential paradoxes, such as the grandfather 

paradox, make it pointless to even consider the possibility of backward time 

travel. However, as we’ll see, there are two general approaches that could allow 

the laws of physics to be consistent even if backward time travel is possible. 

Each of these is illustrated in numerous works of science fi ction, but one or the 

other must turn out to have a basis in the actual laws of physics, if those laws 

allow one to build a time machine.

The fi rst possibility is that it could be that the laws of physics are such that 

whenever you go to pull the trigger to kill your grandfather something hap-

pens to prevent it—you slip on a banana peel, for example (we like to call this 

the “banana peel mechanism”). This theory is, logically, perfectly consistent. 
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It is somewhat unappealing, however, because it’s a little hard to understand 

how the laws of physics can always arrange to ensure the presence of a suitable 

banana peel.

The other approach makes use of the idea of parallel worlds. According to 

this idea, there are two diff erent worlds: in one you are born and enter the time 

machine, and in the other you emerge from the time machine and kill your 

grandfather. There is no logical contradiction in the fact that you simultane-

ously kill and do not kill your grandfather, because the two mutually exclusive 

events happen in diff erent worlds. Surprisingly there is an intellectually re-

spectable idea in physics called the “many worlds interpretation of quantum 

mechanics,” fi rst introduced in an article in Reviews of Modern Physics way back 

in 1957 by Hugh Everett (no relation to Allen as far as we know). According to 

(the other) Everett there are not just two parallel worlds but infi nitely many of 

them, which, moreover, multiply continuously like rabbits.

In a 1991 Physical Review article, David Deutsch of Oxford University (one of 

the founders of the theory of quantum computing) pointed out that if the many 

worlds interpretation is correct (and Professor Deutsch is convinced that it is), 

it is possible that a potential assassin, upon traveling back in time, would dis-

cover that he had also arrived in a diff erent “world” so that no paradox would 

arise when he carried out the dastardly deed. Allen analyzed this idea in some-

what greater detail in a 2004 article in the same journal. He found that the 

many worlds interpretation, if correct, would indeed eliminate the paradox 

problem—but at the cost of introducing a substantial new diffi  culty, which 

we’ll explain later.

Many physicists fi nd the ideas involved in either approach to the solution of 

the paradox problem so distasteful that they believe, or at least certainly hope, 

that the laws of physics prohibit the construction of time machines. This is a 

hypothesis that Stephen Hawking has termed the “chronology protection con-

jecture.” While this conjecture may very well prove to be correct, at the moment 

it remains only a conjecture, essentially an educated guess that has not been 

proved. We’ll discuss some of the evidence for and against the conjecture.

Another set of situations in which backward time travel can occur involves 

the presence of one of several kinds of infi nitely long, string-like or rotating cy-

lindrical systems. In each of these cases it is possible, by running in the proper 

direction around a circular path enclosing the object in question, to return to 

your starting point in space before you left.

One model of the rotating cylinder type, due to Professor Ronald Mallett 

of the University of Connecticut, has received considerable attention lately in 



Introduction > 9

several places, including an article in the physics literature and Mallett’s book, 

Time Traveler (2006). Mallett suggested that a cylinder of laser light, carried per-

haps by a helical confi guration of light pipes, could be used as the basis of a 

time machine. Two published articles, one by Ken Olum of Tufts and Allen and 

another by Olum alone, defi nitively showed that the Mallett model has serious 

defects, which we will discuss.

Finally, we will summarize where the subject stands today and what the 

prospects are for the future. How trustworthy can our conclusions be, given 

the present state of knowledge? How can we predict what twenty-third-century 

technology will be like, given twenty-fi rst-century laws of physics? Might not 

future theories overturn these ideas, as so often has happened in the history of 

science? We give some partial answers to these questions.
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2
Time, Clocks, and Reference Frames

As happens sometimes, a moment 

settled and hovered and remained for 

much more than a moment. And sound 

stopped and movement stopped for 

much, much more than a moment. 

Then gradually time awakened again 

and moved sluggishly on.

john steinbeck, Of Mice and Men

These lines from Steinbeck’s novel cap-

ture the experience we have all had of 

the varying fl ow of personal time. Our subjective experience of time can be 

aff ected by many things: catching the fl y ball that wins the game, winning the 

race, illness, drugs, or a traumatic experience. It is well known that drugs, 

such as marijuana and LSD, can change—sometimes profoundly in the lat-

ter case—the human perception of time. People who have been in car crashes 

report the feeling of time slowing down, with seconds seeming like minutes. 

The windshield appears to crack in slow motion due to the trauma of the ac-

cident. If our subjective experience of time is so fl uid, we might ask, “Well 

then, what is time . . . really?” Most of us can give no better answer than Saint 

Augustine in the Confessions: “What then is time? If no one asks of me, I know; 

if I wish to explain to him who asks, I know not.” Augustine’s answer some-

what anticipates Supreme Court justice Potter Stewart’s well-known defi nition 

of obscenity, delivered from the bench: “I know it when I see it.”

In this book we are concerned with measures of time that do not depend on 

the variations and vagaries of human perception. Physicists do not at all dis-

count the importance of the problem of the human cognition of time, but it is, 
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at present, too diffi  cult a problem for us to solve. Instead our emphasis will be 

on what modern physics has learned about the subject of time. In our (admit-

tedly biased) opinion, the most valuable insights we have about the nature of 

time are due to advances in physics. The description, at least in part, of what 

we have learned over the years of the twentieth and early twenty-fi rst centuries 

form much of the core of this book. Hopefully you will fi nd these revelations 

as fascinating as we do. However, before we embark on this journey, let us 

fi rst pay a brief visit to a comfortable nineteenth-century living room, where a 

discussion is happening in front of a warm fi replace . . . . 

Time Travel à la Wells

“The Time Traveller (for so it will be convenient to speak of him) was expound-

ing a recondite matter to us. His grey eyes shone and twinkled, and his usually 

pale face was fl ushed and animated.” So opens the most famous time travel 

story in literature, H. G. Wells’s The Time Machine. The Time Traveller claims 

to his dinner guests that “Scientifi c people know very well that Time is only a 

kind of Space.” The guests understandably protest that, although we are free 

to move about in the three dimensions of space, we do not have the same free-

dom to move around in time. The Time Traveller then shows them a model 

of a machine that, he claims, can travel in time as easily as we travel through 

space. He turns the machine on and it spins around, becomes indistinct, and 

promptly vanishes. The guests then discuss what has become of the machine 

and whether it has traveled into the past or the future.

One guest argues that it must have gone into the past, because if it went into 

the future it would still be visible on the table, having had to travel through the 

intervening times between its starting time and the present moment. Another 

guest counters that if the machine went into the past, then it would have been 

visible when they fi rst came into the room during this and previous dinner vis-

its. The Time Traveller goes on to explain that the machine is invisible to them 

because it is traveling through time at a much greater rate than they are. As a 

result, by the time they “get to” some moment, the machine has already passed 

through that moment. The Time Traveller off ers the analogy of the diffi  culty of 

seeing a speeding bullet traveling through the air.

But how much of this discussion actually makes sense? (We certainly would 

argue that it makes for a great read!) As for the Time Traveller’s argument that 

“Time is only a kind of Space,” it is certainly true that our perception of time is 

very diff erent from our perception of space. The notion of what it means to 
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move through space, and even to move through space at diff erent rates, makes 

some intuitive sense to us. Our “rate of travel through space,” our speed, is the 

distance traveled divided by the time interval required to cover that distance 

(i.e., in the simple case of straight-line motion at constant speed). The units 

by which we measure “rate of movement through space” are units of distance 

divided by units of time. Thus 60 miles per hour is a faster rate of movement 

through space than 30 miles per hour.

How can we characterize the “speed” or “rate of movement” through time? 

Suppose we say something like 1 hour per second, so 1 hour per second would 

be 3,600 seconds per second. The problem is that we have the same units in 

both the numerator and the denominator of our quantity, so they cancel out 

and we end up with an answer of simply “3,600,” a pure number. So what does 

this mean, 3,600 “what”?

In fact, our previous discussion really involves two diff erent times. One we 

might call external time and designate it t. This is the time by which most of us, 

excluding the Time Traveller, live our lives. One can think of it as based on the 

time measured by an atomic clock located at the National Institute of Standards 

and Technology in Fort Collins, Colorado. Many other clocks are synchronized 

to this by radio signals. The second time that enters the discussion is the Time 

Traveller’s own personal biological clock time, or pocket watch time, propor-

tional, for example, to the number of heartbeats or the number of ticks of his 

watch that have occurred since some agreed-on starting point. Let us call this 

time T. In the usual situations t and T are at least roughly the same (although 

the rate at which a person’s heart beats is somewhat variable). We can say that 

normally, t / T = 1 sec (of external time) / 1sec (of personal time).

When the machine, with the Time Traveller inside, travels into the future, 

t will be greater than T. That is, a long time must go by in the outside world 

while the Time Traveller ages only a little bit. For example, let’s say that the 

Time Traveller spends one minute, according to his personal time, in the time 

machine (T = 1 minute). Then suppose that when he steps out of the machine 

and looks at the daily paper, he fi nds the date is one year later than when he 

started his trip. He has traveled one year (more precisely, one year minus one 

minute) into the future, and we can say that his “rate of travel,” t / T, is equal 

to 1 year of external time / 1 minute of personal time. If we do not specify that 

these are two diff erent times, then the notion of “rate of time travel” becomes 

rather confusing. This is because, as we discussed earlier, we could specify the 

numerator and denominator in the same units, for example, seconds, and then 

t / T would be just a pure number whose meaning is hard to interpret.
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The notion that the machine would be invisible as it travels doesn’t make 

sense. If the machine is traveling, into the future for example, then it will be 

continually present and thus constantly visible to the Time Traveller’s guests. 

In order for the machine to age only a few minutes while years pass by outside 

the time machine, all processes within the time machine, including the physi-

ological processes of any time traveler, must seem to happen very slowly. To ex-

ternal observers, the Time Traveller and his machine appear frozen in place.

Conversely, the Time Traveller will see things in the outside world hap-

pening at a highly accelerated rate, since he will see a year’s worth of events 

crammed into a minute. Wells’s fi ction depicts this correctly. In the following 

passage, the Time Traveler describes the view from inside the machine during 

his trip into the future:

The jerking sun became a streak of fi re, a brilliant arch, in space, the moon a 

fainter fl uctuating band . . . Presently I noted that the sun belt swayed up and 

down from solstice to solstice in a minute or less, and that consequently my pace 

was over a year a minute, and minute by minute the white snow fl ashed across 

the world and vanished, and was followed by the bright, brief green of spring.

Our earlier conclusion that the machine must be constantly visible to exter-

nal observers implicitly assumes that the machine travels continuously through 

time. By this we mean that in order to go from moment A to moment B, the 

machine must pass through all the moments in between. Let us now consider 

the possibility that the machine time jumps discontinuously through time. This 

idea as applied to Wells’s time machine is ruled out by the law of conservation 

of energy. The mass of the time machine and the energy it represents by virtue 

of the famous Einstein relation E = mc2 cannot simply disappear, since the total 

energy in the universe is conserved, that is, remains constant, in time. (As a 

result of Einstein’s relation, we will often use the terms “mass” and “energy” 

interchangeably.) Suppose that an external observer sees the Time Traveller 

get into his machine, turn it on, and disappear. As far as the external observer 

is concerned, the energy of the Traveller and his machine have disappeared 

from the universe, with no compensating increase in energy elsewhere in the 

universe to make up the diff erence. Likewise, an external observer who sees the 

time machine and its occupant appear out of nowhere will see an increase in 

the energy of the universe with no compensating decrease anywhere else.

There is, however, another version of this idea, which we will explore in 

detail later. It involves the Time Traveller taking an alternate path into the past 

or future through a “wormhole.” While in the wormhole, the Time Traveller 
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would be invisible to those outside and would reemerge at a diff erent time. 

That’s probably not what Wells was thinking of, since wormholes hadn’t been 

imagined yet. When the Time Traveller enters the wormhole time machine, 

he disappears from the external universe, but the mass of the wormhole increases 

by an amount equal to the Time Traveller’s mass. So an external observer will 

say that mass (energy) is conserved. Similarly, when the Time Traveller exits 

from the other end of the wormhole, external observers will see the mass of the 

wormhole decrease by an amount equal to the Time Traveller’s mass. So for 

each set of external observers, the mass (energy) of (Time Traveller + worm-

hole) remains constant. We will explore in more detail some of the subtleties 

of energy conservation associated with this method of time travel in a later 

chapter.

Incidentally, the existence of conservation laws, which state that there are 

various properties of a system that remain constant in time, is one indication 

that there are important distinctions between time and space. This is in con-

trast to Wells’s statement, quoted earlier, about the lack of such distinction. 

There are no corresponding laws concerning quantities remaining constant 

in space. It is true that relativity, as we will see, shows that space and time are 

much more interconnected than was previously thought, but the laws of phys-

ics also distinguish between them.

The Time Traveller implies that the machine occupies the same space but 

only travels through time. What exactly does it mean to say that an object “stays 

in the same location in space?” Well obviously, you say, the machine doesn’t 

move around on the table. But the table and the Time Traveller’s house are 

sitting on the surface of the earth. The earth is rotating on its axis and revolv-

ing around the sun, therefore so is the time machine. Since the earth does 

not “stay in the same location in space,” what does it mean to say that the 

time machine does? If we assume, as Newton did, the existence of an absolute 

space against which all motion can be gauged, then from our previous argu-

ment it seems very unlikely that the earth could always be at rest relative to this 

“absolute space.” (Relative—now that’s a word we’re going to hear a lot in our 

discussions.)

When we say something “stays in the same place” or is “at rest,” we are 

implicitly assuming the additional phrase “with respect to, or relative to, 

something or other.” For example, if an observer is riding in a car traveling at 

60 miles per hour, the car and observer are traveling at this speed relative to 

the ground. However, the observer’s speed relative to the car is zero! So he can 

equally truthfully say that he is moving or that he’s staying in the same place. 
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It all depends on what the observer is using for his points of reference. If we 

say that the time machine remains at its same location in this absolute space, 

then the Time Traveller will be in for a surprise. He will fi nd that the surface of 

the earth will move out from under the time machine, leaving it hanging in the 

vacuum of space. If that’s the case, he’d better be careful about when he turns 

off  the machine.

Let us suppose that the time machine does make a jump from one point in 

time to another. Already the specter of time travel paradox begins to emerge, 

as nicely described in an article by the philosopher Michael Dummett. Suppose 

that on Sunday at 12:00 noon, the Time Traveller places the miniature model 

time machine on the table and sends it off  on its journey to the day before, 

Saturday, at 12:00 noon. Then anyone coming into the room on Saturday after 

12:00 noon would have seen the time machine on the table. But then it would 

seem that when the Time Traveller comes into the room on Sunday, carrying 

the machine, he will see a “copy” of the machine already on the table. The copy 

on the table will be the machine that traveled back (i.e., the one he is about 

to send) to the past to Saturday and which has been sitting on the table ever 

since. But the copy is already occupying the place where he intends to put his 

machine.

To avoid the problem of the two machines getting in each other’s way, let us 

suppose instead that when the Time Traveller fi rst comes to the table on Sun-

day, he fi nds it empty. He places his model on the table and sends it off . Where, 

then, did it go (in space as well as in time) if it was not on the table when he 

came in? It appears that someone or something must have moved the machine 

in between the time that it appeared on the table on Saturday and the time that 

the Time Traveller placed his model there on Sunday. Perhaps the housekeeper 

placed it back in the Time Traveller’s lab on Saturday at 1:00 p.m. to avoid 

having it damaged. On Sunday, the Time Traveller goes to his lab, picks up the 

model machine and takes it to the living room where he places it on the table.

There are several curious things about this latter scenario. Suppose the 

housekeeper decides not to move the machine but to leave it on the table. Then 

we would have a consistency problem (Dummett discusses one way around 

this). If we assume that she in fact must move the time machine, then the ac-

tions of the housekeeper on Saturday (i.e., whether she moves the machine or 

not) are determined by whether or not the Time Traveller chooses to turn on 

the machine on Sunday. So events in the past can be constrained by whether 

or not a time machine will be activated in the future. We could take this to 

extremes and say that an experiment I do today might be aff ected by the fact 
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that someone is going to build a time machine a thousand years from now! 

This seems quite bizarre, because in science we are used to the idea that in 

performing an experiment, we are free to set things up (i.e., “choose our initial 

conditions”) any way we like. Indeed, our whole process of science is in some 

ways predicated on this idea.

A second problem with our scenario is the following. Suppose that the Time 

Traveller places a tiny celebratory bottle of champagne on the seat of the model 

time machine, which he uncorks just before turning the machine on. The Time 

Traveller sets the machine off  on Sunday, whereupon it eff ectively appears in-

stantaneously on Saturday. Then if the housekeeper places the machine in the 

Time Traveller’s lab, which sits there until he picks it up and takes it to the 

living room table on Sunday, he notices that there is a fl at bottle of champagne 

on the seat of the machine. So the time machine that he places on the table 

cannot be exactly the same as the one he sent back. The one he sent back had a 

fresh bottle of champagne on the seat but the one he fi nds in his lab and sub-

sequently places on the table has a bottle of fl at champagne. If you say, “Well, 

the Time Traveller simply removes the stale bottle and replaces it with a fresh 

one before activating the machine,” then you have the problem of explaining 

where the stale bottle came from in the fi rst place. We will have more to say 

about this kind of paradox and its relation to something called the “second law 

of thermodynamics” later in the book.

Time and Space Measurements

After our brief foray into time travel (which was meant to whet your appetite), 

let us consider the more mundane question of how we measure the position 

of an object in space and time. For our purposes, we will take a very practical 

approach and consider time to be “that which is measured by a clock.” A clock 

is just a device that keeps going through repetitive cycles, for example, the 

swinging of a pendulum or the vibration of a mass on the end of a stretched 

spring. One then defi nes the length of a time interval as being proportional to 

the number of cycles.

Good clocks should be easy to reproduce exactly, and their rate of vibration 

should not be aff ected by external conditions. The periods of two pendulums 

will be diff erent unless they have exactly the same length. And even if they do, 

the period will change slightly—but measurably—if the temperature changes, 

because that would cause the length to change slightly. Human hearts are ob-

viously very bad clocks, since they beat at diff erent rates for diff erent people, 

and people are notoriously hard to reproduce exactly. And even for a particular 
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person, the heart rate is diff erent at diff erent times, depending on whether they 

are asleep or running a marathon. The most accurate clocks today are atomic 

clocks, which are based on the vibrations of light waves emitted by atoms, 

often atoms of the element cesium. These make good clocks because any two 

of the cesium atoms used are absolutely identical, and their rate of vibration is 

aff ected only by very extreme changes in external conditions. Such clocks can 

measure time to accuracies of billionths of a second or better.

By contrast, we can determine positions of objects in space using a series 

of objects of fi xed length, such as meter sticks. Suppose that lightning strikes 

the roof of a train station at 1:00 p.m. We will call the lightning strike “an 

event.” To locate the event in space and time, we need four numbers, or four 

“coordinates”—the spatial coordinates in terms of a set of X,Y, and Z spatial 

axes—and the time at which the event occurred. But fi rst we need to choose a 

set of fi xed axes to measure the spatial coordinates. We can choose these axes 

to be fi xed with respect to the ground or with respect to a speeding train, car, 

or rocket. Once we have chosen our axes, we can imagine laying out a grid 

or “jungle gym” of meter sticks along each of the three axes and at rest with 

respect to them and to each other. The spatial location of an event is denoted 

by the x, y, and z coordinates along the three axes, as measured using the grid 

of meter sticks. To measure the time at which an event occurs, we imagine a 

“latticework” of points in space with a clock placed at each point in the lattice. 

The time at which we deem an event to occur will be the time reading on the 

clock nearest the event. For this setup to make sense we must synchronize all the 

clocks with one another. It turns out that there are subtleties associated with this 

process, which we will analyze carefully in the next chapter. This network of 

meter sticks and synchronized clocks is called a “frame of reference.” The fact 

that the spatial and temporal positions of an event are measured in diff erent 

ways is another signal of a physical distinction between space and time. The 

procedure by which quantities are measured is important because physics is 

ultimately an experimental science.

There are certain kinds of reference frames that can be singled out for dis-

cussion. We have all had the experience of falling asleep on a train while wait-

ing for it to pull out of the station and then suddenly waking up and looking 

out the window at a train on the other track. If the motion is smooth, with 

no bumps, and no changes of direction (i.e., “constant velocity,” or mo-

tion in a straight line at constant speed), then we cannot tell whether it is 

our train or the other that is moving. If we drop or roll balls on the fl oor of 

the train car, they will behave in the same way, whether it is our train or the 

other that is moving. A frame of reference that is attached to such a train in 
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which we cannot distinguish rest from uniform motion is called an “inertial 

frame.”

The name “inertial frame of reference” comes from Newton’s fi rst law of 

motion. This law says that “an object at rest remains at rest, and an object in 

motion continues in motion in a straight line at constant speed, unless acted 

on by an external force.” In plainer but somewhat less precise language, New-

ton’s fi rst law says that if left alone an object will tend to continue doing what-

ever it’s doing. Frames of reference in which objects behave this way are called 

inertial frames; frames in which they don’t are called noninertial frames.

An air table is a device used in elementary physics labs. It consists of a hori-

zontal table with many tiny holes drilled in the surface through which a con-

stant stream of air is blown. A light hockey puck placed on the table will move 

essentially without friction. If placed at rest it will remain at the same spot on 

the table. If given a shove, it will move at constant speed in a straight line until 

it hits the edge of the table. Now consider two additional identical air tables. 

Place one in a car moving at constant speed in a straight line relative to the lab 

containing the original air table. Place the second air table in a car that is accel-

erating (i.e., whose velocity relative to the lab frame of reference is increasing). 

Let us assume that the windows of the car have been blacked out so that the 

passengers cannot see outside. (Don’t try this at home!) Hence, they can only 

make conclusions regarding their motion from observations made from within 

the car. The frame of reference attached to the fi rst car is an inertial frame of 

reference. This is because a hockey puck placed on the air table in that frame 

will continue doing whatever it was doing. If initially at rest it will remain so; if 

moving it will continue moving in a straight line with constant speed. In other 

words, it behaves according to Newton’s fi rst law, just like the hockey puck on 

the air table back in the lab. However, consider the placement of a hockey puck 

on the air table in the accelerating car. If placed at rest on the table, it will not 

remain at rest, but will slide backward (if the car is accelerating forward in a 

straight line). To an observer in the car this seems peculiar, because there is no 

obvious external force acting on the puck, since the air table is frictionless. Yet 

the puck does not obey Newton’s fi rst law. An observer in this car will notice 

that they too feel pushed back in the seat by some unseen force. Similarly, a 

hockey puck placed on an air table on a rotating merry-go-round will feel a 

peculiar force that makes it move in a curved, rather than a straight, path if 

launched from the center outward to the edge along a radius. So we can tell the 

diff erence between inertial and noninertial motion. More generally, an inertial 

frame is one which is nonaccelerated and nonrotating (actually, rotation is an 

example of accelerated motion), as seen from another inertial frame.
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How do we relate the measurement of an event in one frame to measure-

ments of the same event in another frame? For two inertial frames, there is a 

simple intuitive relationship between the coordinates of an event in one frame 

and its coordinates in the other frame. This set of relations is called the “Gali-

lean transformations,” named after the famous seventeenth-century Italian 

physicist Galileo Galilei, who laid the framework for the study of motion.

Suppose that we have two frames of reference that move at a constant speed 

along a straight line relative to one another. For example, suppose one frame 

is at rest with respect to some train tracks and the other frame is at rest with 

respect to (or “attached to”) a train moving at constant speed along a straight 

stretch of the track. For simplicity, let us consider the relative motion to be 

only along the x axis. A fi recracker goes off  on the tracks at position x,y,z at 

time t, as measured in the track frame. The train moves along the positive x 

axis with constant speed v. What are the coordinates of the same event in the 

train frame?

Since the relative motion is only along the x axis, the y and z coordinates 

should be the same in both frames. We will also make the (obvious, you say?) 

assumption that time is the same in both frames, so that the time coordinates 

of the events are the same. All that remains is to determine the relation be-

tween the x coordinates of the events in the two frames. (Incidentally, we could 

assume an arbitrary direction of relative motion, but that would just compli-

cate the equations without adding much to our understanding in the present 

discussion.) Let us arbitrarily call the x coordinate of the event relative to the 

track frame, which we will call the “S(track) frame,” simply x. The correspond-

ing coordinate of the same event in the train frame, which we call the “S'(train) 

frame,” will be denoted as x'. In fi gure 2.1, the S(track) and S'(train) frames are 

shown; the origins of the coordinate systems in each frame are denoted by 

O and O', respectively, and coincide with one another, that is, they are just pass-

ing one another, when t = 0. The coordinate axes of the S(track) frame are des-

ignated X and Z; those in the S'(train) frame are denoted X' and Z' (for simplicity, 

we have suppressed the Y,Y' axes in fi gure 2.1). The S'(train) frame moves with 

constant velocity v to the right along the X and X' axes relative to the S(track) 

frame. (Note that a velocity has both a speed, i.e., a size or magnitude, and a 

direction.) At time t in the S(track) frame the fi recracker explodes [in this dis-

cussion we assume that the time of explosion is the same in the S'(train) frame, 

namely, t' = t] at location x',y',z'. Since the relative motion is only along the X 

and X' axes, the y and z coordinates are the same in both frames, that is, y' = y 

and z' = z. We see from the diagram that the corresponding x coordinate of the 

explosion is simply x = x' + vt, namely, its position in the S'(train) frame plus the 
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fig. 2.1. Observers in two inertial frames. The frame S(track) is attached to the train 

track, and the frame S'(train) is attached to a train moving at constant velocity. 

horizontal distance which the origin of the S'(train) frame has moved during 

the time t.

Therefore, the set of relations between the coordinates in the S'(train) and 

S(track) frames can be written (after a minor rearrangement) as:

The Galilean Coordinate Transformations

x' = x – vt

y' = y

z' = z

t' = t

These are called the Galilean transformations. Let us again emphasize the im-

portant point that x and x', for example, represent the coordinates of the same 

event (the explosion of the fi recracker in this example) as seen from two diff erent 

reference frames. They do not refer to two diff erent events. It will be important to 

keep this in mind during much of the subsequent discussion. The velocity v 
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can, of course, be directed to the left, that is, in the negative x direction. In that 

case, v would be replaced by –v in the transformation equations, and the arrow 

labeled v in fi gure 2.1 would point to the left.

In our previous example, the fi recracker was at rest in the S'(train) frame 

prior to the explosion. Now consider another example in which an object is 

moving relative to both frames. Referring to our previous fi gure, let the object 

move with speed u' to the right, as measured in the S'(train) frame. The same 

object is measured to have speed u to the right, as measured in the S(track) 

frame. How are these two velocities related to one another? If you guessed that 

there is also a Galilean transformation for velocities, you’d be right. [Note that 

v still represents the velocity of reference frame S'(train) relative to S(track) as be-

fore. We have now introduced a second velocity u which represents the velocity 

of the as yet unspecifi ed object relative to S(track), and u' the object’s velocity 

relative to S'(train).]

To make things concrete, let’s suppose that the object is a person who walks 

at a speed of u' = 1 mph to the right with respect to the fl oor of the train, that 

is, as measured in frame S'(train). (Once again, for simplicity, we will consider 

all the motion to be along the x and x' axes.) Let the speed of the train with re-

spect to the track, that is, the speed of the S'(train) frame relative to the S(track) 

frame, be v = 60 mph. How fast is the person on the train moving relative to the 

track? It’s fairly easy to see that the speed of the person relative to the track (u) 

will be equal to the speed of the person with respect to the train (u') + the speed 

of the train with respect to the track (v), namely, u = 1 mph + 60 mph = 61 mph. 

More generally, we have u = u' + v.

Another simple example is the case, experienced by many people nowadays, 

of walking along a moving walkway. If the walkway moves, for example, at a 

speed of 2 feet per second relative to the ground, and you walk at a speed of 

3 feet per second with respect to the walkway, then your speed relative to the 

ground is 5 feet per second.

If in our expression, u = u' + v, we instead write the primed quantities in 

terms of the unprimed quantities, as before, we have:

The Galilean Velocity Transformation

u' = u – v

The velocity transformation can be easily gotten from the Galilean coordinate 

transformations. The reader who is interested in these details can fi nd them 

in appendix 1.

The Galilean transformations are simple and intuitively obvious. As we will 

see in the next chapter, they are also wrong.
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3
Lorentz Transformations 

and Special Relativity

Nothing puzzles me more than time 

and space, and yet nothing puzzles me less, 

for I never think about them.

charles l a mb

It gets late early out there.

yogi berr a

In this chapter we will look at how experi-

ments force us to modify the simple—and 

seemingly obvious—Galilean transformations (introduced at the end of the 

chapter 2) when we deal with objects and reference frames whose speeds are 

comparable to c, the speed of light. These modifi cations will lead us to Ein-

stein’s special theory of relativity. Since light and the speed of light will be so 

important in this story, we’ll begin with a brief look at the state of knowledge 

which physicists had about this subject in the years leading up to Einstein’s 

accomplishment.

For nearly two centuries after the time of Newton, physicists debated 

whether a beam of light was a stream of particles or whether it was a wave, 

similar to ripples on the surface of a pond. In the case of a wave, one has some 

medium, for example, the water in the pond, which oscillates or vibrates as the 

wave passes. In the case of the water wave, the water molecules oscillate up and 

down as the wave moves, let us say, from left to right. At a given moment, the 

water molecules at a particular point in the pond, call it point P, may be at their 

maximum height. If we were watching the wave, we would say that at that mo-
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ment there was a crest of the wave at point P. A bit to the right of P, the water 

molecules would be momentarily at the lowest point of their oscillation, and 

there would be what is called a wave trough. A little later, the water molecules 

at P will be at the lowest point of their cycle, so there will be a trough at P, while 

the crest which was there initially will have moved to the right. Note that it is 

the wave itself, that is, the shape of the surface that moves from left to right. 

The water molecules themselves do not move from left to right with the wave, 

but just bounce up and down in place. A similar situation occurs in the case of 

sound, but in that case molecules in the air oscillate back and forth as a sound 

wave passes, rather than up and down.

When waves come from two diff erent sources (e.g., spreading out from two 

diff erent openings in a breakwater into the otherwise smooth surface of the 

harbor behind), the waves can exhibit a phenomenon called “interference.” 

This occurs, for example, when crests from the two waves arrive at the same 

point at the same time, giving rise to crests that are twice as high as those 

from the individual waves. That is, at those points the water molecules reach 

twice the height during their up-and-down oscillation than they would if only 

one of the waves was present. Similarly, if troughs from the two waves arrive 

together, they produce a trough that is twice as deep as those of either wave 

by itself. At such points the two waves are said to interfere “constructively.” 

On the other hand, there will be points where crests from one wave, tugging 

the water molecules upward, arrive at the same time as troughs from the other 

wave, tugging downward. The result is that the water molecules never feel any 

net force, up or down. Thus, at those points the water doesn’t oscillate at all, 

and the surface remains still. At these points the waves are said to interfere 

“destructively.” In between these two kinds of points one sees, as you would 

expect, water oscillations that are not totally absent but are not as vigorous 

as at the points of complete constructive interference. Interference is a phe-

nomenon characteristic of waves, and its occurrence is a sure indication of the 

presence of wavelike behavior.

In 1801, the English physicist Thomas Young passed a beam of light 

through two parallel slits in a screen and observed an interference pattern of 

alternate bright and dark bands on a second screen behind the slits. Such pat-

terns are much harder to see in the case of light waves than that of water waves 

because the wavelength (the distance between successive crests or successive 

troughs) of a light wave is something like a million times shorter than that of 

water waves. This turns out to mean that very narrow slits must be used in the 

case of light. Young’s experiment indicated conclusively that light had a wave-
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like nature. (About a century later, with the advent of quantum mechanics, it 

was discovered that light also has particle-like properties, but this need not 

concern us at the moment.)

James Clerk Maxwell’s Great Idea

While Young’s experiment seemed to settle the question that light was a wave, 

it left other questions open. What, exactly, was it that was oscillating as a light 

wave passed, and in what medium was it propagating? The fi rst of these ques-

tions was answered in the second half of the nineteenth century by the work of 

the Scottish physicist James Clerk Maxwell on the theory of electromagnetism, 

that is, the combined theory of electricity and magnetism, which turned out to 

be intimately related to one another. Through the work of physicists such as 

Coulomb, Ampère, and Faraday, a set of equations governing what are called 

electric and magnetic fi elds were derived. These fi elds describe the electric and 

magnetic forces that act on electrically charged particles in various situations. 

Maxwell noticed that the equations for the electric and magnetic fi elds were 

rather similar, but that there was a term in one of the equations for the electric 

fi eld which had no counterpart in the corresponding equation for the magnetic 

fi eld. Although at that time there was no experimental evidence for this latter 

term, Maxwell guessed that it should be there.

When Maxwell included this new term he found that the enlarged set of 

equations had a remarkable new kind of solution. This solution corresponds 

to waves composed of oscillating electric and magnetic fi elds, propagating 

through space similarly to water waves through water. Moreover, he calcu-

lated the velocity of these waves in terms of two parameters that described the 

strength of the electric and magnetic forces between given confi gurations of 

electric charges and currents. The value of these parameters was known from 

measurements of these forces. When Maxwell plugged in the known values of 

these parameters, he found that the speed of these new waves, which are now 

called electromagnetic waves, was predicted by the equations to be 300,000 kilo-

meters per second, that is to say, about 186,000 miles per  second—the speed 

of light waves!

It was inconceivable that this could be a coincidence, and the obvious con-

clusion was that light waves were, in fact, examples of this new kind of wave 

that the equations of electromagnetism, with Maxwell’s term added, predicted. 

The exclamation point at the end of the preceding paragraph is well deserved. 

This is one of the most remarkable and beautiful results in the history of theo-
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retical physics. Maxwell was able to predict the speed of light, the quantity 

we now call c, in terms of two well-known constants that, before his theory, 

appeared to have nothing at all to do with light waves. One might guess that, 

when he fi rst calculated the speed of the new kind of waves predicted by his 

equations and saw the answer, he felt an exhilaration comparable to that felt 

by a major league ball player who has just hit a walk off  grand slam home run 

in the seventh game of the World Series. Because of this remarkable result that 

followed from Maxwell’s contribution, the entire set of four equations govern-

ing the electric and magnetic fi elds are now called Maxwell’s equations, even 

though he was only personally responsible for the form of one of them.

As we have emphasized, when you talk about the velocity of an object, you 

must always be clear—velocity with respect to what? If we say the speed of 

sound is about 300 meters per second, we mean, although we do not always 

say, that this is the speed of sound relative to the air, one of the media through 

which sound waves propagate. So what about light? When Maxwell predicted 

that the speed of light was c, that is, about 3 × 108 meters per second: to what 

was this relative? Since waves need a medium in which to propagate, and no 

such medium was apparent in the case of light, one was invented, and given 

the name “aether” (pronounced “ether”). The aether was pictured as a kind of 

massless, colorless, and otherwise undetectable fl uid whose one mission in 

life was to provide a medium in which light waves, that is, Maxwell’s electro-

magnetic waves, could propagate. (Obviously the word “aether” in this usage 

has nothing to do with the drug which can be used to induce anesthesia.) So, 

by analogy with sound, c was presumed to be the speed of light relative to the 

aether. Or, to put it another way, it was the speed of light in a very special (or as 

physicists say, “preferred”) reference frame, namely, the reference frame that 

was at rest relative to the aether. Unfortunately, since no one could see, feel, 

hear, taste, nor smell the aether, that presumption was a little hard to verify.

The Michelson-Morley Experiment

But one could do something that was almost as good, or so it appeared. Two 

American scientists, Albert Michelson of Case Institute of Applied Technol-

ogy and Edward Morley of Western Reserve University (the two neighboring 

suburban Cleveland institutions have since combined to form today’s Case 

Western Reserve University) set out to do it in 1887. To a physicist, the earth 

plays no particularly special role. Therefore, Michelson and Morley had no rea-

son to believe that the frame of reference in which the earth was at rest at any 
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 particular moment was the preferred frame defi ned by Maxwell’s equations, 

that is, the frame of reference of the aether. Thus, they expected that the speed 

of the earth’s reference frame relative to the aether would be at least as great as 

the speed of the earth in its orbital motion around the sun.

We should note that the earth itself does not, strictly, constitute an inertial 

frame, because it is not moving with constant velocity. A reference frame at-

tached to the center of the earth is accelerating, because the direction of its 

velocity is continuously changing as it follows its (nearly) circular path around 

the sun. In addition, a point on the surface of the earth has an additional ac-

celeration due to the earth’s rotation on its axis. These accelerations are both 

relatively small, compared, for example, to the acceleration of Newton’s fa-

mous falling apple, and it is often a reasonable approximation to regard the 

earth itself as defi ning an inertial frame of reference. An excellent approxima-

tion to an inertial frame is a frame attached to the center of the sun and with its 

axes pointing in a fi xed direction relative to the distant stars, so that the axes 

are not rotating.

Let’s call the earth’s orbital speed v. The earth’s orbit is roughly a circle 

whose radius, r, is about 93,000,000 miles, or about 1.5 × 108 kilometers. In 

one year, which turns out to be about 3 × 107 seconds, the earth travels a dis-

tance equal to the circumference of the orbit, 2πr. This yields a value of about 

30 kilometers per second for v. In everyday terms this is a very high speed, 

about one hundred times the speed of sound, but it is only a very small fraction 

(about one thousandth) of the speed of light.

Michelson and Morley set out to demonstrate the existence of a preferred 

frame for light waves by measuring the earth’s velocity with respect to it. Sup-

pose that at some instant of time the earth, in its circular motion, is moving 

almost directly away from some particular star. Given the number of visible 

stars, that’s pretty much guaranteed to be the case. Consider the speed of 

light as seen from the earth. To do this, we’ll go back to our discussion of the 

Galilean velocity transformation equations in the preceding chapter. Only this 

time, instead of letting the two reference frames, S and S', represent the train 

and track frames for a moving train, we’ll let S(aether) represent the reference 

frame of the aether, and S'(earth) the reference frame in which the earth is mo-

mentarily at rest.

To continue, in our S(aether) and S'(earth) frames, we take the earth to 

be moving along the x (and x'   ) axis relative to the aether. Then the v in the 

Galilean velocity transformation equations will be the speed of the earth rela-
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tive to the aether, and u will be the speed of the light relative to the aether in 

the direction in which the earth is moving, that is, in the x direction, so that 

u = c, (that’s what defi nes the aether) and u' in the transformation equations 

will be the speed of the starlight relative to the earth in the x direction. The 

Galilean velocity transformation equation u' = u – v becomes u' = c − v. That is, 

the speed of the starlight relative to the earth along the x axis, which is also the 

line from the earth to the star, is predicted to be a little bit less than c , because 

the earth is “running away” from the starlight with speed v. We can recast this 

equation as v = c − u', where v is the velocity of the earth through the aether, 

which Michelson and Morley wished to measure. Remember their guess was 

that v might be about equal to the earth’s orbital speed of about 0.001c. Since 

they guessed that v was probably going to be much less than c, they performed 

very careful measurements in order to get a believable value for v.

Before we can understand the experiment, we must also remind ourselves 

of one other aspect of the Galilean transformations. Let’s look at the diff er-

ence between the two reference frames in the rate at which an object, or in 

our case, a light pulse is moving along the y or z axis in the aether and in the 

earth frames, that is, in a direction perpendicular to the velocity of the earth. 

Here, the Galilean transformations, as well as our common sense, tell us the 

diff erence is zero. However, the speed of a light pulse moving along the y or 

z axis will be aff ected by the earth’s motion in the x direction, since the speed 

in a given frame depends on the rate of motion of the pulse in both the x and y 

directions in that frame. This is analogous to the fact that a boatman rowing 

cross-stream against a moving river must have part of his motion through the 

water directed against the current in order to end up on exactly the opposite 

side of the riverbank. Part of his motion must fi ght the current. Hence, his 

speed in the direction perpendicular to the bank will not be as great as if there 

were no current.

Michelson and Morley admitted a beam of light into their apparatus, called 

an interferometer. This is illustrated in fi gure 3.1. The light was initially travel-

ing perpendicular the earth’s direction of orbital motion.

Then, by use of a beam splitter, oriented at 45° to the light path, they broke 

the light into two beams. One was transmitted through the beam splitter, and 

continued a distance d perpendicular to the direction of the earth’s motion in 

the earth (primed) frame, that is, along the y', not the y, axis in order to hit the fi rst 

mirror. Since the y' axis itself is moving along with the earth at speed v, this 

beam has a velocity v in the x direction in the aether frame. Since, by defi nition, 
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light moves with speed c in the aether frame, the Pythagorean theorem tells 

us this beam will have a speed we’ll call v
y

= c2 − v2
 along the y axis.1 But 

since by either the Galilean transformations or common sense the velocities in 

directions perpendicular to the earth’s motion are the same in either S(aether) 

or S'(earth), the light pulse will move with speed vy' = vy along the y' axis. There 

it was refl ected by mirror 1 back to the beam splitter.

The other beam was refl ected off  the beam splitter but traveled the same 

distance d sidewise and was then likewise refl ected from mirror 2 back to the 

beam splitter. A portion of the two beams then recombined and went to the 

left, where they both hit a screen and formed an interference pattern. Both had 

traveled a distance 2d. If the two beams traveled at the same speed they would 

take an equal amount of time to make their respective journeys, and they would 

1. To use some sailing terminology, you can think of this as a result of having to “tack” cross-

wise against an aether “current”.
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interference

pattern
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√c  - v √c  - v

fig. 3.1. The Michelson-Morley experiment. A beam of 

light is split into two parts. One beam moves at right angles 

to the direction of the earth’s motion through the ether; the 

other moves fi rst against and then with the earth’s motion. 

The two beams then recombine at the screen on the left.
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show perfect constructive interference. “Crests” (points where the fi elds had 

their maximum values) of the two beams would arrive back at the same time 

and reinforce one another, as would “troughs,” so that the two beams interfere 

constructively.2

But this was not what Michelson and Morley expected to see, because they 

did not believe the two beams traveled at the same speed. A bit of algebra 

(which we won’t go into) shows that the “up-and-down” beam in fi gure 3.1 

always beats the “side to side” beam. The diff erence in travel time for the two 

beams is observable, since the interference is no longer exactly constructive. 

The size of this eff ect should have allowed Michelson and Morley to obtain a 

value for the earth’s speed, v, through the aether.

What happened when they did the experiment? Michelson and Morley found 

that, within the accuracy of their measurement, v = 0. Taken at face value, this 

meant that at the time of their measurement the earth happened to be at rest 

relative to the aether, an almost inconceivable coincidence. But anyway, it was 

easy to check that idea. They just had to redo the experiment six months later 

when the earth, as it went around its circular orbit, would be heading in ex-

actly the opposite direction. If the earth happened to be at rest in the aether’s 

frame of reference at the time of the fi rst measurement, six months later its 

velocity relative to the aether would be diff erent. However, when they repeated 

the experiment, Michelson and Morley got the same result. The light beams 

moving parallel to and perpendicular to the direction of the earth’s orbital ve-

locity appeared to have the same velocity relative to the earth. Now the result 

could not be attributed to any coincidence, however improbable. Assuming 

Michelson and Morley had done their work correctly, there was no escaping a 

conclusion that was diffi  cult to accept. The commonsense procedure for add-

ing velocities, embodied in the Galilean transformations, doesn’t work in the 

case of light! If a light beam moves through space at speed c and an observer 

moves through space at speed v, the observer also sees the light beam moving 

by him at speed c.

The Michelson-Morley experiment is one of the truly seminal experiments 

in the history of physics. Like all important experiments, it has been redone 

many times by others to verify the result. The experiment is a diffi  cult one to do 

2. An important point in the design of the apparatus was that when they were detected, both 

the forward-and-back and left-and-right beams had passed once through the half silvered mirror, 

and had been refl ected once off  it. Hence, the diff erent speed of light in glass than in air canceled 

out between the two beams and produced no diff erence in travel time between the two beams.
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because of the small size of the eff ect expected, which is just about at the limit 

of what the experiment is capable of detecting.

The Two Principles of Relativity

Einstein’s special theory of relativity, published in 1905, rests on two basic 

principles from which everything else follows. The fi rst principle of relativity 

states that all physical laws have the same form in every inertial frame. Since 

inertial frames diff er from one another by being in motion with constant veloc-

ity relative to each other, the fi rst principle says that if you are in a closed room, 

there is no physics experiment that you can do that will tell you whether you 

are at rest or in motion with a constant velocity. In fact, it says the question of 

whether you are at rest or in uniform motion isn’t really meaningful, because 

the laws of physics do not pick out any particular inertial frame as distinguish-

able from all the others; physicists would say there is no “preferred” inertial 

frame. Thus there is no unique way to answer the question, “in uniform mo-

tion relative to what?” You’re always entitled to regard your own inertial frame 

as, so to speak, the “master frame” relative to which velocities are measured.

Maxwell’s equations leave open the possibility that light travels with speed 

c relative to the source of the light, for example, the bulb of some lamp. The 

second principle of relativity, as adopted by Einstein, is that the speed of light 

doesn’t depend on the motion of the body emitting the light. There were ex-

periments known at the time (which we will not go into here) in support of 

this principle. If the speed of light doesn’t depend on the motion of the emit-

ting body, there is nothing else on which it can depend without violating the 

fi rst principle. The two principles of relativity together imply that observers in 

all inertial frames measure the speed of light to be c relative to their reference 

frame.

The Michelson-Morley experiment provides evidence that, as an experimen-

tal fact, the speed of light is the same in all inertial frames. While Einstein 

was aware of the Michelson-Morley experiment, he seems, perhaps, to have 

based his own thinking more on a strong intuitive conviction that Maxwell’s 

equations for electromagnetism should be valid in every inertial frame, and 

not just valid in some preferred frame picked out by an otherwise unobserv-

able aether.

The validity of the fi rst principle of relativity, like all physical principles or 

laws, rests on experiment. However, it places very strong constraints on the 

possible forms that physical laws can take, and so far we’ve never observed 
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those constraints being violated. One powerful example of the result of such 

constraints occurs in the case of one of the most important of all physical 

laws—that of conservation of energy. It turns out that, in the form it was known 

before special relativity, it did not obey the fi rst principle of relativity and looked 

diff erent in diff erent inertial frames. Einstein suggested that a proper formula-

tion of the law of conservation of energy ought to be constrained by the fi rst 

principle of relativity. The proposed revisions led to a number of experimental 

predictions, including the famous equation E = mc2. These predictions have 

been tested extensively in many diff erent experiments and so far have passed 

all the tests. In fact, these predictions as to the form of various physical laws 

provide much stronger experimental support for special relativity than does 

the prediction of the universal value of the speed of light in all inertial frames. 

That prediction rests on the Michelson-Morley experiment and various succes-

sors, which are diffi  cult to perform with a high level of precision.

The Lorentz Transformations

It follows from the outcome of the Michelson-Morley experiment and from 

Einstein’s fi rst principle of relativity that the Galilean transformations cannot 

be completely correct and must be modifi ed in situations where the speeds u or 

v become close to c. The modifi cation, however, must be such that the Galilean 

transformations remain valid in situations where the speeds involved are much 

less than c, where our everyday observations tell us they are correct. The fi rst 

principle then says that, provided we transform our coordinates correctly in 

going from one inertial frame to another, all physical laws have the same form 

in every inertial frame.

One can actually fi nd an alternative set of transformations that satisfy these 

requirements, and, in particular, give u' = c when u = c. These are called the 

Lorentz transformation equations (Lorentz had developed these equations 

prior to Einstein, but he did not correctly grasp their physical implications). In 

appendix 2 we will discuss in more detail how these equations may be arrived 

at. Here we will simply write them down and examine their properties and 

consequences. We again suppose that we have two inertial reference frames, 

and take one to be the frame S(earth), in which the earth is momentarily at rest. 

Since we now wish to put aside the rather unphysical idea of the undetectable 

aether, we will take the other frame to be S'(ship), with its origin attached to 

a passing starship moving by the earth with constant velocity v. As before, we 

orient the two reference frames so that their axes are parallel, with v directed 



32 < Chapter 3

along the common x and x' axes. We will also set the clocks at the origins of the 

two frames so that observers on both the earth and in the ship see both clocks 

reading t = t' = 0 at the moment the two origins pass one another.

We remind the reader of the situation under consideration. Suppose we have 

an “event”—something that happens at a defi nite time and place, for example, 

a bat striking a ball. We can label the coordinates of this event by giving its time 

and space coordinates (t,x,y,z), as read on clocks and meter sticks at rest in 

S(earth). We can also label the position and time of the same event by giving its 

coordinates (t',x',y',z',) in the frame S'(ship). The transformation equations then 

give the primed (ship frame) coordinates of an event in terms of its unprimed 

(earth frame) coordinates. We fi rst recall the form of the Galilean transforma-

tions from chapter 2. The Lorentz transformations follow:

Galilean Transformation Equations

t' = t, x' = x − vt, y' = y, z' = z

Lorentz Transformation Equations

t ' =
t − vx

c2

1− v2

c2

, x' = x − vt

1− v2

c2

, y' = y, z' = z

First, how do these equations behave when we are concerned only with speeds 

much less than the speed of light? For such cases, all the terms in the equa-

tions above which have a v in the numerator and c in the denominator will 

be very small, compared with the others, so we can safely ignore them (this 

should be especially true of the terms involving 
v2

c2 , since when you square 

the already-small number 
v
c

 you get a really, really small number). Now notice 

if we just throw away all the terms in the Lorentz transformation equations 

that involve 
v
c

, you do indeed get back the Galilean transformations. The diff er-

ences introduced by going to the Lorentz transformations become signifi cant 

only when 
v
c

 is not negligibly small.

In particular, the preceding remark applies to one of the most striking 

things about the Lorentz transformations. When we introduced the Galilean 

transformations, we just threw in the last equation, t' = t, as an afterthought, 

since there was no obvious reason why the time shown on a clock should be 

diff erent just because the clock was moving. But that’s no longer true if the 

clock is attached to a reference frame that is moving at a speed comparable to 

c. In that case, if you want to have the speed of light equal to c in both reference 
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frames, it turns out that t' and t are necessarily diff erent, and, in particular, 

that t' depends on both t and x. In other words, the time at which observers on 

the ship see an event occur depends not only on when it occurred in the earth 

frame, but also where. We shall see shortly just how this relates to the fact that 

the speed of light is c in both frames.

We have chosen the origin of the S'(ship) frame so that it is just passing the 

origin of the S(earth) frame when the clocks at the origin of both frames read 

zero. Also, the origin of S'(ship), where x' = 0, is moving with speed v relative to 

the earth. Hence, the point with x' = 0 should be at x' = vt. Looking at the fi rst of 

the Lorentz transformation equations, we see it is indeed true that when x' = 0, 

x = vt, a property that is required if they are to make sense.

Finally, what about the speed of light in the two reference frames? Showing 

that the Lorentz transformations guarantee it is the same as seen by observers 

on earth and on the spaceship is just a matter of algebra. Let’s suppose that at 

t = 0, we emit light pulses from the origin of the S(earth) reference frame in 

both the positive and negative directions along the x axis. Since light travels at 

speed c relative to the earth, the trajectories of the two pulses will be described 

by the equations x = ct and x = – ct, respectively. We can summarize these two 

equations, after squaring both sides of each, by saying that the motion of the 

two pulses as seen by observers on earth satisfi es the condition x2 – (ct)2 = 0. To 

show that observers on the spaceship also see the light pulses traveling at speed 

c we must ask whether the Lorentz transformations imply that it is also true that 

x' 2 – (ct' )2 = 0. In fact it turns out they imply a little more, namely”

x2 – (ct)2 = x'2 – (ct')2

for any value of x2 – (ct)2 . Almost everything we do in the rest of the book follows from 

this equation. If you wish, you can just take our word that it is correct. You can 

also prove it yourself by substituting the Lorentz transformation equations for 

x' and t' into the right-hand side of the equation above. We give a proof of it in 

appendix 3.

The Invariant Interval

We’re going to put what we’ve just told you (and what you’ve seen for your-

self if you’ve been conscientious and done the algebra) in diff erent language, 

which is convenient and commonly used. This also leads to an interesting 

partial analogy between the three-dimensional space of Euclidian geometry 

and the four-dimensional spacetime of relativity, that is, the set of all possible 
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events. Let us defi ne a quantity s2, which we’ll call the “interval” between an 

event at the origin of the reference frame S(earth), and an event with time and 

space coordinates (t,x,y,z) by the equation s2 = x2 + y2 + z2 – (ct)2 = r 2 – (ct)2. Here 

we’ve put the y and z coordinates back, even though they’re pretty much just 

along for the ride, and made use of the three-dimensional generalization of 

the Pythagorean theorem, x 2 + y2 + z2 = r 2, to rewrite the equation in terms of the 

spatial distance r of the event from the origin.

What we’ve learned from our investigation of the Lorentz transformation is 

that r 2 – (ct)2 = r'2 – (ct')2. That is, the interval has just the same form when ex-

pressed in terms of the coordinates in the ship frame. It is this property which 

gives s2 its name of invariant interval. An invariant quantity is one that is the 

same in all inertial frames of reference, such as the speed of light, c. We refer 

to the transformation from S(earth) to S'(ship) by using the Lorentz transfor-

mation equations to relate the coordinates in the two frames, and say that s2 is 

invariant under such transformations.

Let’s consider for a moment purely spatial geometry. Instead of talking 

about transformations to a moving reference frame, we can discuss transform-

ing to a new spatial coordinate system obtained by rotating the coordinate axes 

while keeping the axes mutually perpendicular. For example, in two dimen-

sions, we might take new axes that connected opposite corners of the paper, 

instead of being horizontal and vertical. We’ll call our new spatial axes in two 

dimensions, X' and Y'. [This is a new set of primed axes which have nothing 

to do with the reference frame S'(ship) and were obtained by a rotation, not a 

Lorentz transformation.] This situation is illustrated in fi gure 3.2.

We can also specify the position of a point P in the plane by giving its co-

ordinates in the primed coordinate system. The primed and unprimed co-

ordinates of the points will be different, but the combinations x2 + y2 and 

x'2 +  y'2 will be equal, since our friend Pythagoras assures us that both are equal 

to r 2, where r is the distance of P from the origin. This distance certainly hasn’t 

changed just because we chose to use a rotated set of coordinate axes. Thus, 

we say that r is invariant under rotations, because it has the same form in terms 

of the coordinates in two coordinate systems obtained from one another by a 

rotation. In simpler terms, we could say that the length of line r has an “ex-

istence” in the plane which is independent of any coordinate system we use. 

After all, we could have drawn the line on the page fi rst, and then added the 

coordinate systems later.

We can think of s as being a kind of distance of an event from the origin in 

spacetime in the same way that r is the distance of a point in space from the 
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spatial origin. This analogy can be helpful, but it can’t be pushed too far. In 

ordinary space, distances are always positive, but spacetime “distances” can 

be positive, negative, or zero. In the three-dimensional version of fi gure 3.2, 

r  2 = x2 + y2 + z2, which is always positive (or trivially zero). Remember that the 

analog in four-dimensional spacetime, the interval s  2 = r  2 – (ct)2, contains an-

other piece in addition to r2, and the term involving t has a diff erent sign than 

the spatial terms. The minus sign is important, and is another example of the 

fact that while time and space are more closely related in special relativity than 

in Newtonian physics, as mentioned in chapter 2, they are not physically equiv-

alent. In particular, in contrast with r  2, the invariant interval s2 can be positive, 

negative or zero! For example, in the case of an event that occurs at the spatial 

origin, r = 0, and therefore whose only nonzero coordinate is t, s 2 = – (ct)2, s2 

is negative. In the case of an event connected to the origin by a light signal, 

r  2 – (ct)2 = 0, s2 = 0.

In appendix 4 we will explore an approach that involves looking at Lorentz 

transformations to a diff erent inertial frame as a kind of rotation of the coor-

dinate axes in the x,t plane, rather than in a plane containing two spatial axes. 

One fi nds that the minus sign in the invariant interval makes its presence felt, 

fig. 3.2. A rotation of coordinate systems. Although 

the  x and y components diff er from the x' and y' com-

ponents, the length of the line, r , is the same in both 

coordinate systems.
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and “rotations” in the x,t plane look geometrically quite diff erent from ordi-

nary spatial rotations.

Clock Synchronization and Simultaneity

Allen has a watch with a small radio receiver that receives time signals from an 

atomic clock at the National Institute of Standards and Technology in Colo-

rado. It saves him the nuisance of having to reset his watch occasionally. It is 

“synchronized,” that is, always in agreement with, the national time standard. 

However, were Allen a zealot for precision, he would be bothered by the fact 

that his watch is always off  by around a hundredth of a second, because that’s 

the length of time it takes a radio signal to get two-thirds of the way across the 

United States to his watch in Massachusetts (a radio signal, like light, is one of 

Maxwell’s electromagnetic waves and travels at the speed of light).

If Allen was really concerned about those hundredths of seconds, in prin-

ciple, his watch could be exactly synchronized with the atomic clock at NIST 

by changing the watch’s circuitry so that the reading of the watch took account 

of the time delay due to the transit time of the radio wave. Obviously, this is 

not really a serious problem for Allen. But it does illustrate what has to be in-

cluded if you want to set up a frame of reference, at least conceptually: a series 

of clocks distributed throughout space, all of which show the same time. To 

do this, you can imagine taking a large number of identical clocks, along with 

radio receivers, and distributing them at strategic points throughout space in 

some inertial frame of reference, so that the clocks are all at rest relative to one 

another. You measure the spatial coordinates, x,y, and z, of each of the clocks 

with the framework of meter sticks that constitutes the spatial part of the ref-

erence frame. The distance of the clock in question from the origin will then 

be r, where r = x2 + y2 + z2 . You then send out a radio signal at a given time 

from the origin of the coordinate system, saying, “This is time t = 0.” A person 

at each of the clocks then sets the clock to read, not t = 0, but t = r / c, to take 

account of the travel time of the light signal. You now have a set of clocks that 

are all at rest relative to one another and, as far as observers in that reference 

frame are concerned, all agree with one another.

Why did we put in that qualifying phrase, “as far as observers in that refer-

ence frame are concerned?” Let’s go back to our reference frames S(earth) and 

S'(ship). Consider the time when the clock at the origin of S(earth) reads t = 0, 

and look at all of the clocks distributed along the x axis at various values of x 

in the earth frame. (The y and z coordinates don’t get changed when you make 
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a Lorentz transformation, so we’ll just forget about them most of the time.) 

Since they are synchronized in the earth frame, they will all read t = 0. That 

is, the events corresponding to the hands of those clocks reading t = 0 appear 

simultaneous to observers in that frame.

What about for observers in the ship? The striking new feature of the 

Lorentz transformations is that the value of t' depends on both t and x.

Let’s look at the clocks at the origin of the earth frame and at the point P 

on the x axis with x coordinate x = x1. Consider two events: the event in which 

the hands of the clock at the origin in the earth frame read t = 0 and the event 

in which the hands of the clock at P in the earth frame read t = 0. The time and 

space coordinates (t,x) of the two events in S(earth) are thus (0,0) and (0,x1), 

respectively, and they are simultaneous.

Now let’s use the Lorentz transformation equations to fi nd the time of the 

fi rst event in S'(ship). Plugging x = 0 and t = 0 into the equation for t' gives t' = 0. 

No surprise there, but also nothing interesting since the convention we ad-

opted was to take t = t' = 0 at the moment when the origins of the two reference 

frames passed one another, that is, when x = x' = 0. Notice, by the way, that at 

this moment the two clocks are momentarily at the same point, right next to 

each other. Observers in both reference frames can see them both simultane-

ously and compare them unambiguously without having to send any signals 

back and forth.

But look what happens for the other event. Putting t = 0 and x = x1 into the

Lorentz transformation equation for t' gives t' =
−vx

1
/c2

1− v2 /c2( )
. Observers in

the two reference frames do not agree on the time of the second event. More-

over, observers in the earth frame think the two events were simultaneous, but 

those in the ship frame do not.

Why is this so? Before looking at the answer to that question, in order to 

avoid some possible confusion, let us take a moment to examine something 

the principles of relativity do not say, although on fi rst reading you might be 

tempted to think that they do. They do not say that you will observe the speed 

of light to be c relative to every other object. They only say that will be true of 

objects that are at rest relative to you, that is to say, at rest in the inertial frame 

in which you are also at rest. For example, consider the following situation 

of a light pulse and a spaceship approaching one another, as observed in the 

earth’s frame of reference. The light pulse is directed in the negative x direction 

and moves with speed c while the ship is traveling in the positive x direction 

with speed c / 2. Then, after one second, provided the light pulse and the ship 
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haven’t actually met, the distance between them as measured by observers on 

earth, will have been reduced by 186,000 + 93,000 miles. Therefore, observers on 

earth will see the speed of the light pulse relative to the ship to be 279,000 miles 

per second, or 
3
2

c. This does not violate the principles of relativity, because 

we are not in the ship’s rest frame. We could carry out a transformation, using 

the correct (Lorentz) transformation equations, to a reference frame moving 

with speed c / 2 in the positive x direction, that is, to the rest frame of the ship. 

The relative speed of the light pulse and the ship in that frame would be c, since 

the ship is at rest.

Thus, observers in diff erent inertial frames do not agree on the relative 

velocity of two moving objects. In particular, the principles of relativity only 

guarantee that observers will measure the relative speed of a light pulse and 

an object to be c in the object’s rest frame. We might note that this problem 

did not come up in the discussion of the Michelson-Morley experiment, since 

there we were dealing with the speed of two diff erent light beams, moving in 

perpendicular directions, relative to the earth, as measured by observers on 

earth.

Let us return to the problem of why observers in the frames S(earth) and  

S'(ship) don’t agree on the time at which the clock at the origin of S'(ship) 

passes the point P, where x = x1. The problem is that observers in the two 

frames do not agree on the proper way to synchronize clocks. Observers in the 

earth frame synchronized the clock at P with the one at the origin by taking 

the travel time of a light signal in going to the right from the origin to P to be 

x1 / c, since they see the light moving at speed c relative to their frame S(earth). 

Observers in the ship frame also see light moving to the right relative to them-

selves at speed c, but they also see the earth moving to the left relative to them 

with speed v, since the ship is moving to the right relative to the earth. Thus, 

as we discussed in the previous two paragraphs, they will see the earth and the 

light moving toward one another, so to them the light is moving, relative to the 

earth, with speed c + v. As we discussed, observers in the two frames disagree 

on the relative speed of the earth and the light pulse. However, in agreement 

with the principles of relativity, both sets of observers see the light pulse mov-

ing with speed c relative to their own reference frame.

Observers in S'(ship) will thus say, “Those silly people in the earth frame 

don’t even know how to synchronize their clocks correctly. They used c in com-

puting the time delay due to the travel time of the light signal, when any fool 

can plainly see they should have used c + v. No wonder their clocks are incorrect 

and don’t agree with the correctly synchronized clocks in our reference frame.” 
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Observers on earth will, of course, have an equally dim view of observers in the 

ship frame as clock synchronizers for similar reasons. The fact that observers 

in each frame see light moving at speed c in their frame means that each set of 

observers uses a diff erent, and for them correct, procedure to synchronize their 

clocks.

The Light Barrier

We mentioned in the introduction that special relativity is generally believed to 

rule out travel at speeds greater than the speed of light. A glance at the Lorentz 

transformation equations will indicate why this is so. You will see that, in 

transforming from the earth’s reference frame to a reference frame moving 

with speed v relative to the earth, the equations for the coordinates in the new

frame contain the expression 
1

1 − (v2 / c2 )
. This may look a little complicated

at fi rst sight, but it’s actually easy to understand. In an everyday situation, 

when v is much less than c, v2 / c2 is very small and the denominator just be-

comes 1. So when v is small, this whole expression becomes a fancy way of 

writing “1.” But as v gets close to c, the square root gets close to (1− 1) = 0. 

Since this factor is in the denominator, the overall expression gets bigger and 

bigger. Finally, if we tried to let v = c exactly, then the denominator would be 

exactly zero. But division by zero is a mathematically meaningless operation 

whose result is undefi ned. So the Lorentz transformations are telling us that 

the relative velocity of any two inertial reference frames must be less than c. But 

the rest frame of a material particle moving at a uniform speed v would be an 

inertial frame. The fact that inertial frames are limited to speeds of v < c thus 

seems to imply a similar limitation of the speeds of material particles. So the 

form of the Lorentz transformations implies the existence of a “light barrier” 

preventing matter from attaining the speed of  light.

This conclusion also follows from the expression one obtains for the en-

ergy of a particle of mass m and speed v, if one imposes the condition that the 

laws of conservation of energy and conservation of momentum have the same 

form in all inertial frames, in consonance with the fi rst principle of relativity. 

The resulting expression for the energy E of a particle of mass m and speed v is

E = mc2

1− v2 / c2
. Because of the square root in the denominator, it would

require infi nite energy to accelerate such a particle to the speed of light, which 

is another way of saying that no material particle can ever actually attain the 
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speed of light. If one looks at the derivation of this expression, which, though 

very pretty, is perhaps a bit too mathematical to give here, one sees that the 

square root in the denominator has its source in the corresponding square 

root in the Lorentz transformations. So again we see that the existence of a 

light barrier in special relativity arises from the requirement that the speed 

of light be the same in all inertial frames, which in turn leads to the Lorentz 

transformations.

“Massless” Particles and E = mc 2

Light, of course, does travel at the speed of light, a remarkably unremarkable 

statement. And in quantum theory, light does have a particle-like, as well as a 

wavelike, nature. A discussion of wave-particle duality would lead us much too 

far astray here. For our present purpose, we need just say that the “particles” of 

light, called “photons,” or “light quanta” have m = 0. Hence, if we tried to apply 

the formula we’ve given for the energy of a material particle to light, we would 

fi nd we had 0 / 0, which is mathematically meaningless. However, it turns out 

that there is another way to write the expression for the relativistic energy of a 

particle in terms of its momentum and mass, which is given by E2 = p2c2 + m 2c 4, 

where p is the momentum. This expression does make physical sense when 

m = 0. It says that the energy of a “massless” particle, such as a photon, has an 

energy, given in terms of its momentum, of E = pc, provided that the particle in 

question travels at the speed of light.3

The formula for the energy of a particle we’ve just given may not look very 

much like what you may have learned in an introductory physics course. There 

the discussion may have been confi ned to physics in the everyday, nonrelativis-

tic limit in which v is very much less than c. In that limit, a standard mathemati-

cal result says that E is very well approximated by the formula E = mc2 + 
1
2  

mv2. 

The second term in this formula is the standard nonrelativistic expression for 

the “kinetic” energy of a particle, that is, the energy a particle has because it is 

in motion. In addition, the relativistic formula includes the famous new term 

mc2, corresponding to a “rest” energy, which relativity predicts a particle has 

simply by virtue of its mass, even if it is at rest. Since that term is huge (c2 is a 

very big number in ordinary units), you could reasonably ask why, if that term 

3. This expression can be easily obtained from the relativistic expressions for momentum and

energy: p = mv

1− v2 / c2
, E = mc2

1− v2 / c2
.
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is really there, no one noticed it before Einstein. The answer is that the rest 

energy, while huge, is also constant in the situations in which we ordinarily 

encounter it, because the number of particles of various kinds, with their as-

sociated rest energies, is constant. Such terms usually have no eff ect in solving 

the kinds of problems we are interested in, which involve the way things change 

with time or position, and constant terms generally occur on both sides of an 

equation and cancel out.

The rest energy can have dramatic eff ects in situations in which particle 

numbers do change with time. For example, a particle and its so-called an-

tiparticle, a particle of the same mass but opposite electric charge (such as 

the positron in the case of the electron) can meet and annihilate one another, 

converting their entire combined rest energy into energy of electromagnetic ra-

diation. Such phenomena had not yet been discovered experimentally in 1905 

when Einstein published his paper on special relativity, and their later discov-

ery provided powerful confi rmation of the theory.
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4
The Light Cone

Time past and time future

What might have been and what has been

Point to one end, which is always present.

t. s. eliot, “Burnt Norton”

Well, the future for me is already a thing 

of the past.

bob dyl an, “Bye and Bye”

Absolute and Relative

Special relativity has shown us that time 

and space are diff erent for diff erent ob-

servers. A popular way in which one hears this expressed is with the phrase 

“everything is relative.” But is that really so? For example, does the relativity of 

simultaneity imply that the causal order of events is also relative? By changing 

frames of reference, can we make the Second World War occur before Hit-

ler’s invasion of Poland? That is, can cause and eff ect be reversed by switch-

ing frames of reference? The world would be a pretty peculiar place if that 

were so.

We have seen that light has the same speed in all inertial frames. So the 

invariance of the speed of light is certainly not “relative,” but is absolute in 

special relativity. This fact implies that Einstein’s spacetime, unlike Newton’s 

space and time, can be divided into regions, described by what is called the 

“light cone.” In some of these regions, the order of events in time is the same 

in all frames of reference, and in others the temporal order is relative. As we 

will see, all pairs of events that are causally connected lie within a single region 

of the fi rst type.
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In fi gure 4.1, we present plots of the trajectory, that is, the variable ct versus 

the position x, for the earth and the spaceship in the reference frame S(earth). 

Such a trajectory is often called the “worldline” of an object. For ease and clar-

ity of plotting, we confi ne ourselves to trajectories lying entirely in the two-

 dimensional x and ct portion of spacetime; all of the points we consider have 

y = z = 0. As we have done throughout, we choose the origin, x = 0, ct = 0, to be 

the point where the earth and ship pass one another, and the moment at which 

observers on both the earth and the ship choose to correspond to the origin of 

time on their respective clocks.

The earth is at rest at x = 0 in this reference frame; its worldline lies along 

the ct axis. Its position on the diagram at time t1 is x = 0, ct = ct1, ad we show 

a segment with t stretching from some distance in the past, where t < 0, and 

into the future, where t > 0. In order to plot the worldline of the ship we have 

arbitrarily chosen, v = 0.8c, so that the position of the ship is given by x = 0.8ct. 

The ship’s trajectory on the ct versus x plot will then be a straight line with 

x

c t

x =
 c 

tx = - c t x 
=

 v
 t

past light cone past light cone

future light cone future light cone

worldline of spaceship

worldline of the earth

Ec t

fig. 4.1. The worldline of a spaceship moving with respect 

to the earth.
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slope 0.8,  relative to the vertical axis. All of our slopes are assumed to be measured 

with respect to the vertical axis (this is because, unlike the diagrams you are prob-

ably used to seeing, we have plotted ct along the vertical axis and x along the 

horizontal axis).

We choose the variable ct rather than t for convenience so that both axes 

have the same units of length. For an object moving with speed v, so that x = vt, 

the t versus x curve is a straight line of slope v. The cases of interest will involve 

values of v something like c / 2, and since c is a huge number in normal units, 

the line in question would be almost vertical and indistinguishable from the 

x axis. By taking the variable ct, the slope of the ct versus x curve becomes a 

more manageable v / c. Using ct as the variable is equivalent to taking t as the 

variable, but in units of light-seconds (the distance traveled by light in one 

second, or about 300,000 kilometers), rather than seconds.

The two straight lines labeled x = ct and x = −ct, in fi gure 4.1 describe the 

trajectories of light pulses moving in the positive and negative directions, re-

spectively, along the x axis and passing through the origin at t = 0. These lines 

form what is called the “light cone.” This is the portion of the spacetime sur-

face x2 + y2 + z2 = (ct)2 lying in the ct versus x plane.

The light cone has a special signifi cance, because it plays the same role in 

any inertial system. For example, as we know, if x = ct in S(earth), it is also true 

that x' = ct' in the reference frame S'(ship). The invariant interval s2 between the 

origin and any point on the light cone satisfi es the condition s2 = 0, and, as we 

have discussed, s2 is left unchanged if one makes a Lorentz transformation to 

a diff erent inertial frame.

The light cone divides the page into four quadrants. The bottom and top 

portions of the light cone lie in the regions where t is, respectively, negative 

and positive. That is, they correspond to the regions of spacetime that are, 

respectively, before and after the time that we have called t = 0 when the space-

ship passes the earth. To observers on earth and on the spaceship at t = 0, these 

regions are, respectively, in their past and future, and are called the past and 

future light cones. At points inside the past and future light cones, x2 − (ct)2 < 0, 

that is, s2, the invariant interval between those points and the origin is negative. 

Such points are said to have a “timelike” separation from the origin. This is 

because the “time” part of the interval is larger than the “space” part.

Let’s consider a particular event with time and space coordinates t1 and x1. If 

someone on earth at t = 0 wants to aff ect this event, then he must either travel 

or send a signal which travels at a speed u, where u is at least x1 / t1. Because 

of the light barrier, we must have u / c = x1 / ct1 ≤ 1. That is, the slope of the ct1 
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versus the x1 curve cannot be greater than 1. Moreover, t1 must be greater than 

zero, since we can only infl uence events in our future and not our past (we’re 

not yet talking about time travel). These two conditions combine to describe 

the future light cone, so the future light cone is just the set of events which can 

be infl uenced by someone at the origin.

Let’s look at some examples. Suppose that at t = 0, Starfl eet Command on 

earth receives information that space pirates are planning to attack three space 

stations in exactly one year’s time. The three stations are located at x = 0.4 

light-years, x = 1 light-year, and x = 1.2 light-years. (A light-year, recall, is the 

distance light travels in one year.) This is before Starfl eet has developed warp 

drive, so although they have spaceships with very powerful engines, they are 

limited by the light barrier. What will happen?

Refer to fi gure 4.2. The closest station is inside the forward light cone. As-

suming that ships are available with top speeds greater than 0.4 c, one or more 

ships can be dispatched to support the station, and the ships will arrive before 

the marauding pirates. The second station is right on the edge of the light 

cone. No aid can reach it in time, since material objects cannot attain the speed 

of light. A signal can, however, be sent to the station using electromagnetic 

x

c t

worldline of the earth

t = 0

c (1 year)

0.4 1 1.2 (light-years)

s  < 0 s  > 0s  = 0

E

future light cone future light cone

s  > 0     spacelike

s  = 0     lightlike

s  < 0     timelike

fig. 4.2. “Space pirates.” The fi gure depicts the diff erence be-

tween timelike, lightlike, and spacelike intervals.
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waves, warning of the attack. (Unfortunately, it will not be a very timely warn-

ing, since it will arrive just as the pirates appear.)

The most distant station, which is outside the light cone, is out of luck. 

Nothing that Starfl eet can do will infl uence events at that station one year in 

the future. Help cannot arrive before 1.2 years, and the station will have to fend 

for itself in the meantime.

Now let’s consider the past light cone. The situation is similar, except the 

past light cone is the region of spacetime that can infl uence, rather than be 

infl uenced by, events on earth at t = 0. For example, worldlines of the earth and 

the ship stretch out of the past light cone to reach the origin, and past events 

on the ship, as well as the prior history of the earth, infl uence the earth at 

t = 0.

The interior of the light cone, where s2 is negative, is thus the set of points 

which are in causal contact with the spacetime origin and can aff ect or be af-

fected by what happens there. Since s2 is invariant under the Lorentz trans-

formations, the set of events in the interior of the light cone is the same in all 

inertial frames. The temporal order of events in the interior of the light cone, 

for example, whether an event is in the future or the past light cone of the event 

at the origin, is also a Lorentz invariant. (We will show this in the following 

paragraph.) Thus, given a pair of causally related events, observers in all iner-

tial frames will agree as to which is the cause and which is the eff ect.

To see this, note that under a Lorentz transformation to an inertial frame

moving with speed v relative to the frame S(earth), t ' =
t –vx/c2

1– v2 /c2( )
. Within

the forward light cone, as we have seen, all values of x satisfy x = ut, where 

u / c < 1, and v /c < 1 because of the light barrier restriction on the speed of iner-

tial frames. Now let’s look at the numerator in t', which is t − vx / c2 = t − v(ut) / c2, 

where we have substituted x = ut. We can factor the right-hand side of this last 

equation to get t − v(ut) / c2 = t [1−(u / c)( v / c)]. Since u / c and v / c are both less 

than 1, their product is also less than 1. The denominator of t' is also always a 

positive expression. Thus t' involves t multiplied by a positive number, so that 

t' has the same sign as t. As a result, if an event at the origin causes a later event 

in one inertial frame, the eff ect will be seen to occur after the cause in every 

inertial frame.

On the other hand, events outside the light cone, even though they occur 

before t = 0, cannot infl uence the earth at t = 0, because the invariant interval 

x2 + y2 + z2 − (ct)2 > 0. (Points separated by such an invariant interval are said to 

have “spacelike” separation. This is because the “space” part of the interval is 

larger than the “time” part.) Suppose a Starfl eet spy gained knowledge of the 
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pirates’ nefarious scheme two years in the past by overhearing some conversa-

tion in a bar on the planet Tatooine (for the purists, we know, we’re mixing 

Star Trek and Star Wars) located 4 light-years from earth. The information is not 

going to do Starfl eet any good at t = 0, since it can’t reach them until t = 2 years, 

which is 1 year after the pirate attack occurs. The temporal order of events in 

the exterior of the light cone is not a Lorentz invariant and can be changed 

by a Lorentz transformation. (The argument in the preceding paragraph fails 

in this case because, for points outside the light cone, there is no guarantee 

that u / c < 1. However, the temporal order is not critical in this case, because, 

regardless of the sign of t, events outside the light cone can be of no help to 

Starfl eet Command at t = 0.)

The Light Cone and Causality: A Summary

Because the light cone is so important for our future discussions, and since 

this is a rather diffi  cult section, it’s worth summarizing the ideas we’ve pre-

sented. We recommend a careful study of the following discussion and 

fi gure 4.3 (our treatment parallels that of Taylor and Wheeler, Spacetime Physics, 
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x =
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tx = - c t

future light cone

past light cone

O
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B

C

D
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F

fig. 4.3. The light cone. The event O represents 

the “present moment.” The figure shows what 

events can aff ect, and be aff ected by, event O.
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Sec. 6.3.1 Figure 4.3 shows a light cone associated with an arbitrary spacetime 

event O (we have added one space dimension back in, to better illustrate the 

“cone”).

Event A lies inside the future light cone of O, so O and A are separated by a 

timelike interval, for example, s2 < 0. This means that a particle or signal travel-

ing slower than light, emitted at O at t = 0, can aff ect what is going to happen at 

A. Event B lies on the future light cone of O, so O and B are separated by a lightlike 

(“null”) interval, that is, s2 = 0. Therefore, a light signal emitted at O can aff ect 

what is going to happen at B (in fact, the light ray arrives just as B occurs.) Event 

C lies inside the past light cone of O. This means that O and C are separated by a 

timelike interval, so a particle or slower-than-light signal emitted at event C can 

aff ect what is happening at O. Similarly, event D lies on the past light cone of O, so 

O and D are separated by a lightlike interval, and so a light signal emitted at D 

can aff ect what is happening at O. The events E and F lie outside both the past and 

future light cones of O, so each of these events are separated from O by a space-

like interval, that is, s2 > 0. This means that for O to either aff ect, or be aff ected 

by, events E and F would require faster-than-light signaling. (A worldline con-

necting O with events E or F would have a slope of greater than 45°, and thus lie 

outside the light cone.) Therefore, events E and F can have no causal infl uence 

on O and vice versa. The time order of events A through D are invariant, that is, 

the same in all frames of reference. The time order of events E and F is diff erent 

in diff erent inertial frames. In some frames E and F will be seen as simultane-

ous; in other frames E will be seen to occur before F, or vice versa.

There is a light cone structure, like that depicted in fi gure 4.3, associated 

with every event in spacetime. The light cones defi ne the “causal structure” of 

spacetime in that they determine which events can communicate with each 

other.

Note to the reader: Do not be disheartened if you did not understand every-

thing in the last two chapters the fi rst time through. They are probably the 

most demanding chapters in the book. You may need to read them more than 

once to fully grasp the ideas. However, an understanding of the concepts intro-

duced here, particularly mastery of the notion of the “light cone,” will be crucial 

to understanding the chapters on time travel and warp drives later on.

1. Taylor and Wheeler, Spacetime Physics, 2nd ed. (New York: W. H. Freeman and Co., 1992).
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5
Forward Time Travel and 

the Twin “Paradox”

It was the best of times, it was the worst of times.

charles dickens, A Tale of Two Cities

Baseball player: “What time is it?”

Yogi Berra: “You mean now?”

In the previous chapter, we saw that ob-

servers in two different inertial frames 

didn’t agree on whether their clocks were synchronized initially. When observ-

ers in the frame of reference of the earth thought all their clocks read t = 0 at 

the same time, those in the spaceship frame disagreed, and vice versa. In this 

chapter we are going to see that observers in the two frames also disagree as 

to whether their clocks are running at the same speed. We will see that spe-

cial relativity tells us that moving clocks appear to run slow. An observer who 

sees clocks in the other frame as moving though space will think those clocks 

are running slow compared to his own. Later in the chapter, we will see that 

this prediction leads to one of the clearest experimental verifi cations of special 

relativity and also to the conclusion that travel forward in time is possible.

Time Dilation and A Tale of Four Clocks

Recall that the two frames have coincident x and x' axes, with S'(ship) moving 

in the positive x (and x' ) directions with speed v relative to S(earth). Recall also 

that we placed clocks in the two frames at their respective origins and set them 

to read t = t' = 0 at the moment they pass one another. Let us call these two 
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clocks C0 and C'0, respectively. Since C0 and C'0 are momentarily side by side 

and simultaneously visible as they pass, observers in both frames will see them 

in agreement at that point. Observers in the earth frame will see C'0 moving to 

the right with speed v along with the reference frame to which it is attached. 

Similarly, those in the ship will see C0 moving to the left with speed v. Refer to 

fi gure 5.1 for the discussion in this section.

Now let’s introduce a third clock into the mix, located in the frame S(earth) 

at the point x = x1. We’ll call this clock C1. Since C'0 is starting at the origin at 

t = 0 in the unprimed frame, and traveling with speed v, it will pass C1 when 

C1 reads t1, where x1 = vt1. There is no relativity needed here. This statement 

involves three quantities all measured in the same reference frame, S(earth). 

C

C C

C’ C’

C’

C

C’

C C

x = 0

x = 0 x = x

t’

- v

x = x = v t

C’

x’ = - x’

The view from S(earth) at  t = t’ = 0

The view from S(earth) at  t = t  = x / v 

x’ = 0

The view from S’(ship) at  t’ = t’  = x’ / v

v

fig. 5.1. The time dilation eff ect.
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It’s just the familiar formula that distance traveled equals speed multiplied by 

time, if all of these quantities are measured in the same reference frame.

Here, however, we do need some relativity. Now that we know when the 

clocks pass each other in the frame S(earth), we would like to know what C'0 

reads when it passes C1. That is to say, we have an event, C'0 passes C1, whose 

coordinates in the frame S(earth) are t = t1, x = vt1. What is the time coordinate 

t1' of that event as measured on the clock C'0, which is present at the event and 

at rest in S'(ship)? To answer that question, we need to use the Lorentz trans-

 formation equation t ' =
t − vx / c2( )
1− v2 / c2( )

 and put in the values for t1 and vt1  for

t and x, respectively. If we do this and factor out t1, we get t
1
' = t

1

1− v2 / c2

1− v2 / c2
. 

Since for any quantity q, q / q = q , just from the defi nition of the square 

root, we arrive at the result

t
1
' = t

1
1− v2 /c2( ) .

Observers on earth agree that C'0 was set correctly at t = 0, because it agreed 

with their clock C0 when the two passed each other. Now the time read on C'0 is 

less than that read on C1, because the factor 1− (v2 / c2 ) is smaller than 1 un-

less v = 0. Therefore, observers in the earth frame see the clock C'0, which for 

them is a clock moving with speed v, running slow compared to their clocks 

by a factor of 1− (v2 / c2 ). Special relativity thus leads to the remarkable con-

clusion that moving clocks run slow by the factor 1− (v2 / c2 ), compared to clocks 

at rest, where v is the speed of the clock. This phenomenon is called “time 

dilation.”

There is a subtle point connected with this conclusion. Observers in both 

the S(earth) and S'(ship) frames see the two clocks C1 and C'0 next to one an-

other, and both agree that the time as shown on C1 is greater than that shown 

on C'0. Since C1 is a moving clock in S'(ship), why don’t observers in the ship 

frame come to the conclusion that moving clocks run fast? Observers on the 

ship agree that C0 read correctly at t' = 0. However, C1 is synchronized with C0 

according to observers in S(earth). As we discussed in the last chapter, observ-

ers in the two frames do not agree as to how to synchronize distant clocks. 

Therefore, observers on the ship say you cannot draw any valid conclusions 

from observations of C1 because it wasn’t set correctly to begin with.

The Lorentz transformations have been set up to guarantee that the prin-
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ciples of relativity prevail. This means that observers in any inertial frame must 

see moving clocks running slow, but they must determine this on the basis of 

experiments that are valid in their own frame. To allow observers in S'(ship) to 

do this, we must introduce a fourth clock, C'1, which plays the roles in S'(ship) 

that C1 played in S(earth). That is, C'1 will be a clock at x' = –x'1; the minus sign 

refl ects the fact that C0 will be moving in the negative x' direction relative to 

S'(ship). Remember now that C'1 will be synchronized with C'0 according to ob-

servers in the ship frame. If observers in S'(ship) compare the reading of what 

they see as the moving clock, C0, with that of C'1 as they pass, they will fi nd that 

C0, which was correct at t' = 0, is now reading slow.1

Note that the two events, clock C'0 passing clock C0, and C'0 passing clock C1, 

occur at the same place in S'(ship). Thus the time between these two events can 

be measured by a single clock, C'0, in this frame. The time between two events 

that occur at the same place in some inertial frame, and thus can be measured by a 

single clock, is called the “proper time.” In our example above, t' is therefore 

the proper time. The name is somewhat misleading, as it seems to denote the 

“correct” or “true” time. In fact, it implies neither of these. You can think of 

proper time as the time measured by your wristwatch as you travel along your 

worldline in spacetime.

To summarize, what we really mean by the phrase “moving clocks run 

slow,” is that a clock moving at a constant velocity relative to an inertial frame 

containing synchronized clocks will be found to run slow when timed by these 

synchronized clocks. (An alternative, more geometric way of deriving the time 

dilation formula, without using the Lorentz transformations directly, can be 

obtained using a device known as a light clock, discussed in appendix 5.)

The Twin “Paradox”

In this section we will discuss one of the most famous “paradoxes” of rela-

tivity, the twin paradox. However, it should be noted at the outset that all of 

these standard so-called paradoxes of relativity, including the twin paradox, 

are really pseudo-paradoxes. That is, they only seem to be paradoxes because 

the principles of relativity have been applied incorrectly. This distinguishes 

1. If you want to verify this, you will need what are called the inverse Lorentz transformation 

equations, which give t and x in terms of t' and x'. You can get these by taking the Lorentz transfor-

mation equations given in chapter 3, interchange t and t' and x and x', and replace v [the velocity 

of S'(ship) relative to S(earth)] with -v, since S(earth) will be moving to the left, in the negative x' 

direction, as seen from S'(ship).
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them from the genuine logical consistency paradoxes which can occur in time 

travel, such as the grandfather paradox, which we will discuss at length in later 

chapters.

Let us introduce two twins, Jackie and Reggie, who are employed by a future 

space agency. Jackie is a crew member on a manned fl yby of Alpha Centauri. 

The trip will be made using a rocket that will fl y at constant speed to the star 

4 light-years from earth, circle it, and return. (We ignore, very unrealistically, 

the periods of acceleration and deceleration at the beginning and end of the 

fl ight.) The rocket is capable of giving the spaceship a speed v, such that 

1/ 1− v2 / c2( ) = 10. A little arithmetic will convince you that this means v is 

very nearly equal to c, the speed of light, so we will permit ourselves the luxury 

of saying (a space engineer surely would not) that the 8-light-year round-trip 

will require 8 years as seen by those on earth, though it would actually be a 

little longer. Jackie and Reggie are accustomed to reading a book every week; 

Reggie will read 416 books while Jackie is away, and Jackie stocks the space-

ship library appropriately (with e-readers, naturally, to save weight).

Happily, the trip goes off  without a hitch, and, 8 years later, Reggie meets 

the returning ship and the twins compare notes. Reggie is surprised to fi nd 

that, for Jackie on the spaceship, only eight-tenths of a year have gone by, and 

the forty-second book is only about fi nished. Similarly, Jackie is surprised to 

fi nd that, while less than a year has gone by on the ship, there are the results of 

two U.S. presidential elections to catch up with, and the campaign for a third 

is, alas, already well underway.

In short, while 8 years have gone by for Reggie and the rest of the outside 

world, less than a year has gone by for Jackie. This is just what we concluded in 

chapter 2 would constitute time travel into the future, and just what happens 

in the early pages of  The Time Machine. Thus, we can say that Jackie has traveled 

more than 7 years into the future. The only diff erence is that Wells envisioned 

a time machine that remained stationary in space, while rapid travel through 

space is the mechanism that produces relativistic forward time travel. One 

could also achieve the same time dilation eff ect by traveling around a circular 

path within a relatively limited region of space, rather than out and back as 

with Jackie.

In the scenario we have discussed, there is no ambiguity as to which twin is 

younger, and therefore no ambiguity as to whose clock was running slow. The 

two twins are brought together again after the journey and can compare notes 

in person. Everyone agrees that it was Jackie, due to the time dilation on the 

moving spaceship, for whom time ran slowly.
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But wait just a minute. The principle of relativity provides a sort of Declara-

tion of Independence for inertial frames. It proclaims in ringing terms, “all 

inertial frames are created equal.” Jackie sees the earth move away and then re-

turn. So one might conclude from this that Jackie would have read more books 

than Reggie. If this argument were true, one would conclude that special rela-

tivity indeed led to a paradox.

During the fi rst half of the last century there was a fair amount of contro-

versy engendered by this line of argument, with even some reputable physicists 

suggesting that it struck at the logical foundation of special relativity. In fact, 

there is no paradox, because there is a physical distinction between Jackie and 

Reggie. Reggie has remained at rest in the reference frame of the earth. Apart 

from corrections due to the earth’s rotation and orbital motion, which are 

small because those velocities are very small compared to the speed of light, 

the earth is an inertial frame, moving with constant velocity. It is the reference 

frame that we have been denoting as S(earth). As an inertial frame, it is under 

the protection of the principle of relativity’s grand proclamation of the equal-

ity of all inertial frames. The same is true of the frame S'(ship), since prior to 

the current discussion, we assumed that the ship was traveling with constant 

velocity.

This is not true, however, of the reference frame of Jackie’s spaceship in the 

twin paradox. That frame cannot move with constant velocity, because if the 

twins are to be brought back together, the spaceship, traveling at relativistic 

speed, must reverse its direction and thus undergo acceleration. It is not under 

the protection of the principle of relativity’s guarantee of the equality of inertial 

frames.

Invariant Interval and Proper Time

Consider the event, which we’ll call E for convenience, in which a clock C lo-

cated at x = 0 in a certain inertial frame, which we’ll call Se, reads t = T. Therefore 

the invariant interval between E and the spacetime origin O (with coordinates 

(0,0)) is s2 = − ct( )2

+ (x)2 = − cT( )2
. The elapsed time on the clock, which was 

present at both the spacetime origin O and E, is thus −s2 / c2 . (Recall that for 

timelike intervals, s2 < 0, so –s2 > 0, and the quantity under the square root is 

therefore positive.) The time of an event on a clock present at both the spacet-

ime origin and the event E, is the proper time of the event, as measured along 

that clock’s particular worldline. However, proper time is not unique, in the sense 

that it depends on worldline of the clock in question between the origin and E. Here 

we have the special case that the clock is at rest in an inertial frame, and in that 
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case we have the simple relation given above between the proper time on that 

clock and the invariant interval (this gives us a new additional property of the 

invariant interval, which we didn’t know before).

Now let’s say that, instead of a clock C remaining at rest, we consider a clock 

C' that goes from the origin O with coordinates (0,0) to E with coordinates (0,cT) 

by fi rst moving at constant velocity v to the intermediate spacetime event

A,with coordinates x,ct( ) = vT

2
,
cT

2

⎛
⎝⎜

⎞
⎠⎟

. It then travels from event A to event E

along another path of constant speed v, but in the opposite direction. That 

is, we fi rst give the clock a “kick” in the positive x direction, and then a kick 

in the opposite direction. In the twin paradox, C' would correspond to a clock 

on the spaceship, in the approximation in which we assume that Jackie’s 

ship fl ies to Alpha Centauri at constant speed and then turns immediately 

around and flies back, neglecting all the speeding up and slowing down 

along the way. This is shown in fi gure 5.2. The heavy black lines represent 

t  = T/2

x

x

c t

= v T/2
t = 0

t = T

E

O

S(earth)

A

path 1

path 2

fig. 5.2. The twin paradox. Reggie’s worldline is the 

straight line connecting events O and E . Jackie, the space-

ship twin, follows the “bent” worldline OAE . In this fi gure, 

Jackie’s acceleration and deceleration periods are ignored. 
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the two legs of Jackie’s trip, outbound and then return. The dotted lines rep-

resent the paths of light rays. The fact that the solid lines are so close to the 

dotted lines indicates that Jackie’s spaceship is traveling very close to the speed 

of light.

We already calculated the proper time elapsed along a straight worldline 

from O to E, which would correspond to the time elapsed for the stay-at-home 

twin, Reggie. That was simply T. Let us now calculate the proper time elapsed 

along a “bent” worldline for Jackie. In this case, we can’t fi nd the invariant in-

terval, and hence, the elapsed proper time on the clock C' at one stroke, because 

the directions of travel along the two segments of the path are diff erent. But 

since the clock moves at the same constant speed along each side, we can use 

the invariant interval for each side to fi nd the elapsed time for each segment of 

the trip, and since elapsed time has no direction, they can be added to get the 

total elapsed time.

The invariance of the spacetime interval can be expressed as

s2 = –(ct' )2 + (x' )2 = –(ct)2 + (x)2

where t' will denote the proper time along the “bent” worldline. This would be 

Jackie’s “wristwatch time.” Let us fi rst calculate the proper time elapsed along 

the fi rst leg of Jackie’s trip, from O to A. We’ll call this part of the trip path 1 

and call the spacetime interval along this path s
2

1
. In Jackie’s frame, all events 

occur at the same place, namely, x' = 0. Therefore the spacetime interval, in 

terms of her coordinates, is just s
2

1
 = –(ct'1)2, where t'1 is the elapsed proper time 

for Jackie along path 1.

To get the spacetime interval along path 1 in terms of Reggie’s coordinates, 

notice that the coordinates of event A in S(earth) are x = vT / 2, ct = cT / 2. From 

the invariance of the spacetime interval, all observers must agree on the value 

of the interval along a given path. Therefore, our earlier equation becomes

s
2

1
 = –(ct'1)2 = –(cT / 2)2 + (vT / 2)2.

Multiplying both sides by –1 and factoring out c2 and (T / 2)2 gives

c2(t '
1
)2 = c2T 2

4
1− v2

c2

⎛
⎝⎜

⎞
⎠⎟

.

If we now cancel the c2, and take the square root of both sides, we get



Forward Time Travel and the Twin “Paradox” > 57

t '
1

= T

2
1− v2

c2
.

Since the bent path is symmetrical, it’s not too hard to convince yourself 

that the spacetime interval along path 2 will be equal to that along path 1, that 

is, s
2

1
 = s

2

2
. An identical calculation to the one just performed would then show 

that the elapsed proper time along path 2, t2', is the same as that along path 1. 

Hence, the total proper time along the bent path is given by t' = t'1 + t'2, and the 

elapsed proper time for Jackie for the entire trip is

t ' = T 1− v2

c2
.

Therefore, the unambiguous result is that t' < T, which means less time has 

elapsed for Jackie than has for Reggie. So Jackie is the younger of the twins 

when they reunite.2

You might be worried about the fact that we ignored the periods of accel-

eration and deceleration during the trip. To show that this is not crucial to the 

argument, let’s look at fi gure 5.3, where we have “rounded off  the corners” of 

Jackie’s trajectory to include these eff ects. We could, if we wished, break up the 

curved path into a lot of tiny (approximately) straight-line segments. Then we 

could work out the proper time along each straight-line segment, as we did in 

the previous example, and add them up. Our result would still be that Jackie is 

younger than Reggie when they reunite. This also dispels the commonly cited 

fallacy that because acceleration is involved, special relativity is not applicable 

and one must use general relativity to resolve the paradox.

In both fi gures 5.2 and 5.3, the “bent” line path between O and E is actually 

shorter, in terms of elapsed proper time, than the vertical straight-line path be-

tween the same two events! But, you say, it certainly doesn’t look that way in the 

fi gure. This is because we are forced to illustrate the geometry of spacetime in spe-

cial relativity (you need to remember the minus sign in the interval!) on a piece of 

paper which has the geometry of Euclidean space. It may help you to recall that, in 

our earlier spacetime diagrams, lines inclined at 45° (representing the paths of 

light rays) actually have zero length in spacetime, that is, s2 = 0. In fi gure 5.2, the 

two legs of Jackie’s trip lie very close to 45° lines, and hence, together have much 

shorter length (in terms of proper time) than the vertical straight-line path.

2. A good fi ctional portrayal of a forward time travel scenario is given in Poul Anderson’s novel 

Tau Zero, Gollancz SF collector’s edition (London: Gollancz, 1970).
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Practical Considerations and Experiments

Special relativity clearly allows the theoretical possibility of traveling forward in 

time. In this section we will examine briefl y why such trips are not a very realistic 

possibility for human beings or other macroscopic objects, as well as the evi-

dence that they are rather commonplace in the world of elementary particles.

Suppose you really cannot wait to see what kind of electronic miracles await 

us 20 years in the future, and you’re only patient enough to spend 2 years get-

ting there. In order to make the trip, you need a space capsule large enough 

to accommodate you that is capable of achieving a speed v through space, such 

that 1− v2 /c2( ) = 1/10 . Then the clocks on the ship, including your own bio-

logical clock, run at about one-tenth the rate of clocks outside. Since the energy 

of an object is mc2 / 1− (v2 / c2 ), you would need to increase the total energy of 

your space capsule by about 9 mc2 to bring its speed up to v. How much energy 

t  = T/2

x

c t

t = 0

t = T

The curved path between O and E
is shorter than the straight path!

x = v T/2

O

E

fig. 5.3. A worldline for a spaceship observer including 

periods of acceleration and deceleration. These make no dif-

ference to the main argument. As a result of the geometry 

of spacetime, the curved worldline connecting events  and   

is actually shorter, in terms of proper time elapsed, than the 

straight worldline connecting the same two events!
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this is depends, of course, on m. Let’s try a value of about 1,000 kilograms for 

m. That’s about the mass of a car, and your capsule would no doubt have to be 

much larger. But even for a mass of 1,000 kilograms, it turns out that mc2 is 

about equal to the entire annual electrical power output of the United States! 

Thus, all the generators in the country would have to devote their full time 

for a year to supplying power for your projected trip. There are other serious 

technical problems as well. But the energy requirement by itself is enough to 

demonstrate that time travel into the future using relativistic time dilation is 

not going to be practical anytime in the near future, if ever.

One experiment has been done in which a macroscopic object was sent into 

the future. The object was an atomic clock, and it was fl own around the world 

on a commercial jetliner. The typical speed of such planes is around 500 miles 

per hour, or around 1⁄7 of a mile per second, which gives a value of v2 / c2 of less 

than 10–12. Nevertheless, the experimental group reported that the clock on 

the plane lost about 1 nanosecond (one-billionth of a second) during the trip, 

compared to a corresponding clock that had remained behind on the ground. 

That was about the limit of the accuracy of the experiment. A supporter of 

special relativity would not feel terribly secure if the experimental evidence in 

support of time dilation hung only by this rather slender nanosecond. (Actu-

ally, the result of this experiment is a test of both Einstein’s special theory of 

relativity and his general theory of relativity, that is, his theory of gravity. The 

calculations done by the experimenters to make their prediction depended on 

both the aircraft’s speed [special relativity] and the height of the aircraft above 

the earth’s surface [general relativity].)

Fortunately, there is a wealth of other evidence from the world of elementary 

particles. Physicists at high-energy labs routinely observe these small masses 

achieve relativistic speeds; we also observe such speeds for cosmic ray particles 

incident on earth from outer space. Many of these particles are radioactively 

unstable and decay with a well-established time interval called a “half-life.” 

That is, half the particles decay, on the average, after one half-life, half of the 

remainder after the next, and so on, and the rate of decay can be observed by 

detecting the decay products with various detectors such as Geiger counters 

or photomultiplier tubes. As a result, a sample of a number of such particles 

provides a clock. It is routinely observed that particles produced with higher 

energy—and thus with speeds close to the speed of light, and hence, a smaller 

value of 1− v2 / c2 —decay more slowly. That is, they have a longer half-life, 

as seen in the laboratory, than similar particles that decay at rest. In general the 

observations are consistent with the relativistic prediction that the time read 
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on a moving clock, which is inversely proportional to the half-life in the case of 

decaying particles, is proportional to 1− v2 / c2 , or equivalently, to mc2 / E.

One experiment of particular interest involved a circulating beam of par-

ticles called muons. These particles decay radioactively with a half-life of about 

a microsecond. The main purpose of the experiment was to compare magnetic 

properties of muons and electrons. In the process, it was confi rmed with rather 

high precision, that the lifetime of muons in motion was equal to the known 

muon half-life at rest multiplied by the predicted factor of 1/ 1− v2 / c2 . In 

contrast to most such experiments, which involve linear beams of particles, 

this one involved a circulating beam with the circulating particles returning 

periodically to their starting point. Thus, it modeled the twin paradox. To no 

one’s surprise the circulating muons, playing the role of the traveling twin, 

underwent time dilation, compared to muons remaining at rest.

The predictions of special relativity are tested literally thousands of times a 

day in high-energy physics accelerators all around the world. In fact, the “nuts 

and bolts” engineers who design these accelerators must take into account the 

eff ects of special relativity, such as the increase in energy with velocity. Other-

wise, their machines would not function.

A Final Look at Forward Time Travel through The Door into Summer

We’ll conclude this chapter with a quick look at another possible mechanism 

for forward time travel—one that does not involve relativity nor primarily even 

physics, but rather, biology and medicine. The look is inspired by Robert Hein-

lein’s book, The Door into Summer. If we had the time, we would be able to meet 

one of the most engaging groups of characters, both human and feline, in sci-

ence fi ction. However, we must forego such pleasures and attend to business.

In the book the protagonist travels forward, then back, and then forward 

again in time. Not surprisingly, Heinlein does not provide a detailed mecha-

nism for backward time travel, resorting instead to a glorifi ed “black box.” But 

he does provide a mechanism for the forward time travel parts of the journey, 

namely, “cold” or cryogenic sleep. The characters’ bodies are cooled to liquid 

helium temperatures, after which it is hypothesized that all aging processes 

stop. That is, the biological clocks of those stored are slowed—essentially 

stopped—with respect to the fl ow of time in the outside world until they are 

brought out of storage at some prearranged future time.

When Allen proposed this to his time travel classes as being a form of time 

travel, his students tended to rebel and think he was cheating. It clearly wasn’t 
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what they were used to thinking of as time travel, perhaps because the travel-

ers were all too clearly there throughout the process, rather than in an invisible 

time machine (which, in fact, should have been visible if  Wells had gotten the 

physics right). Actually, Heinlein’s scheme is exactly the sort of thing we said 

in chapter 2 would constitute forward time travel, namely, time going by very 

slowly for a time traveler inside a time machine relative to the rate at which it 

was going by outside.

In this area it seems likely the necessary physics has already been done. 

Although low-temperature physicists continue to make advances toward the 

unreachable goal of absolute zero, they are already so close that the progress 

comes in small fractions of a degree that seem unlikely to be relevant to the 

cold sleep problem. One guesses that, if this sort of forward time travel can be 

done at all, it can be done at the very low temperatures already attainable.

We are neither MDs nor trained biologists and have no wisdom to off er on 

the likelihood, or even the plausibility, of cryogenic time travel ever becoming 

a reality. It’s not clear to us whether practitioners of the relevant disciplines 

are in a position at this stage to off er any wisdom either. However, given the 

technological problems confronting the relativistic version, which we’ve only 

touched on, it’s not impossible to imagine that forward time travel will turn 

out to be a fi eld for the biologists, not the physicists.

In the meantime, if you haven’t read it and you come across a copy of  The 

Door into Summer, get it; it’s a fun read.
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6
 “Forward, into the Past”

Fritz Fassbender: “I decided to follow you here.”

Michael James: “If you followed me here, how did

you contrive to be here before me?”

Fritz Fassbender: “Eh, I followed you . . . very fast.”

What’s New, Pussycat?

The beginnings of Allen’s participation in 

the writing of this book can be traced to 

a specifi c time and place—in relativistic lingo, to a specifi c event. The time was 

midwinter 1967. The place was the reading room of the library at the Lawrence 

Berkeley National Laboratory, a high-energy physics research laboratory oper-

ated for the Department of Energy by the University of California at Berkeley. 

Allen was in the middle of a streak of extraordinary good fortune. He was cur-

rently enjoying his fi rst sabbatical leave, one of the perks of his recent pro-

motion to tenured rank at Tufts University. Following the completion of his 

graduate work at Harvard, he had accepted an appointment at Tufts, which 

was in the town of Medford, adjacent to Cambridge, and was just beginning 

to develop a PhD program in physics. Over the years this proved a felicitous 

decision in a number of ways. The most important of these was that, just be-

fore her graduation in 1964, he met a strikingly pretty Tufts senior, Marylee 

Sticklin, who was about to receive her degree in biology summa cum laude 

and, happily, begin studying for her own PhD in plant physiology at Harvard, 

conveniently nearby.

Things became a little less convenient a year later when her thesis advisor 

left Harvard to accept a position as provost of one of the colleges at the new 

branch of the University of California, which was about to open at Santa Cruz. 

He invited Marylee to transfer to Santa Cruz so she could continue working 
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under his supervision at his new post. But by that time, a mere 3,000 miles 

was not going to stand in the way. Allen and Marylee became engaged during 

his spring vacation visit to Santa Cruz in 1966 and were married in July of that 

year. By living in San Jose and both enduring rather tedious commutes, Allen 

was able to spend his sabbatical visiting the research group at Berkeley led 

by professors Geoff rey Chew and Stanley Mandelstam, at the time one of the 

most exciting places a young theoretical elementary particle physicist could 

fi nd himself. Marylee, meanwhile, could get on with fi nishing her dissertation 

at the beautiful Santa Cruz campus, looking out over the Pacifi c from amidst 

groves of redwood trees. Thus Allen’s sabbatical was also a kind of yearlong 

honeymoon, which was a fi tting beginning for an idyllic marriage of some 

42-plus years.

Superluminal Particles!?

Now that we know how he got there, however, let’s get back to that seminal 

event for Allen in the Berkeley lab library. On the morning in question he was 

glancing through the latest stack of preprints when he came across a paper by 

Professor Gerald Feinberg of Columbia University. (In those days, physicists 

often sent out to colleagues as well as to libraries advance copies, or “preprints” 

of their current papers that had not yet appeared in print in a professional jour-

nal. Nowadays, we post our papers to what’s called the “e-print archive,” where 

the next day, they become freely available to anyone in the world. If you are 

interested, the URL is http://xxx.lanl.gov (contrary to what you might think, 

this is not the Department of Homeland Pornography).

Feinberg noted that what was really prohibited by special relativity was 

not actually travel faster than the speed of light, but rather, the acceleration 

of ordinary matter to such speeds by going through the speed of light, where 

the Lorentz transformations become meaningless and the energy of ordinary 

particles with mass becomes infi nite. What, Feinberg imagined, if there was a 

class of particles that always moved at speeds greater than c? He proposed the 

name “tachyon,” based on the word in ancient Greek for “swift,” for such par-

ticles, and suggested that their energy in terms of their speed v might be given

by the expression E
t

=
m

t
c2

v2 / c2 − 1
, where v > c. Therefore, we have the square

root of a positive number in the denominator, and we avoid the occurrence 

of the “imaginary” number i = −1, which you probably encountered in high 

school algebra. Imaginary numbers can be very useful in various roles in both 
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mathematics and physics. However, there is no actual, or “real,” number that, 

when squared, gives –1. Therefore, physical quantities, which can be observed 

and measured with an instrument such as a clock or scale, must always be 

given in real numbers.

Notice from the equation that the energy of a tachyon becomes infi nite as 

its velocity decreases toward the speed of light. This is analogous to the behavior 

of ordinary particles whose energy becomes infi nite as their speed increases to-

ward c. Thus, just as the speed of ordinary particles is confi ned by the light bar-

rier to be subluminal, that is, less than the speed of light, tachyons, if they exist, 

would be confi ned to always travel at superluminal speeds, that is, at speeds u 

where u > c. Also notice that, in contrast with ordinary particles, and contrary 

to one’s intuition, the energy of a tachyon would decrease as its speed increases 

and would actually become zero as the speed becomes infi nitely large.

Feinberg was actually not the fi rst to come up with this general idea. O. Bi-

laniuk, N. Deshpande, and E.C.G. Sudarshan had proposed an idea similar to 

Feinberg’s, though diff ering in some important technical details, about three 

years earlier. Their article was published in a journal that was less frequently 

read by research physicists than the Physical Review, in which Feinberg’s paper 

had appeared. As a result, their article had attracted somewhat less widespread 

attention. Also, they had not supplied a name for their suggested new particle. 

Sometimes, even in the world of physics with its strict standards of scholar-

ship, a catchy name for a particle can help draw attention to a new idea.

Tachyons and Paradoxes

Allen thought the tachyon idea was clever and interesting. However, as was 

pointed out in Feinberg’s paper, it had a major problem in the shape of potential 

paradoxes—real paradoxes this time—that could not be walled off  behind quo-

tation marks as in the title of the previous chapter. The paradoxes arise because 

tachyons, by defi nition, have speeds greater than the speed of light, so their 

worldlines are spacelike. Therefore, as discussed in chapter 4, the temporal 

order of events along their worldlines is not the same in all inertial frames. This 

means that tachyons threaten the same kind of paradoxes as those associated 

with backward time travel. The existence of tachyons would not allow people, 

made of ordinary matter, to travel at superluminal speeds. But it does raise the 

possibility of using tachyons to send information at speeds u > c. In relativity, 

this in turn leads to the possibility of sending information backward in time, 
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and this can lead to potentially paradoxical results similar to those encountered 

in science fi ction stories involving backward time travel by humans.

To see how this could happen, let us suppose that observers on earth have a 

device that allows them to produce tachyons of speed u > c. Let us suppose they 

produce such a tachyon at time t = 0, traveling in what we will defi ne to be the 

positive x direction relative to the observers’ rest frame, S(earth). The tachy-

ons are later detected, after a time t = td, at a point with coordinate x = xd = utd 

in S(earth). Since u > c, the spacetime point (td,xd) lies outside the light cone, 

and therefore, as we discussed in chapter 4, the sign of td is not the same in all 

inertial frames.

To observers on the spaceship, moving with speed v in the positive x direc-

tion in S(earth), the tachyon will be detected at time t' = t'd and position x' = x'd 

(as usual, we set the clocks at the origins of the two reference frames to read 

t = t' = 0 as they pass one another). We can use the Lorentz transformations to 

fi nd that, in their reference frame S'(ship), observers on the ship will see the 

tachyon detected at

x
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If we substitute xd = utd into the second of these two equations and factor 

out td, we obtain

t
d
' =

t
d

1−(v2 /c2 )
(1− (vu/c2 ))

Remember that in these equations, v is the speed of the ship and is subluminal, 

that is, u < c. From this last equation we see that if  u > c2 / v, td' < 0. That is, if it 

is possible to generate a fast-enough tachyon, it will be sent backward in time 

in the ship’s inertial rest frame S'(ship) and be detected before it is produced, 

according to observers on the ship. Even if u isn’t big enough to satisfy the 

condition with v equal to the ship’s speed, one can always fi nd some inertial 

frame whose speed is high enough, but still less than c in which the tachyon 

will travel backward in time.

The mere fact is that td' < 0 doesn’t by itself open the way to possible par-

adoxes. That only happens if we can send a return signal from the event at 
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which the tachyon was detected, which reaches x = 0 before t = 0. In that case, 

we could arrange for the receipt of the return signal to block the transmission 

of the original tachyon from the origin and we would then have a paradox in 

which the tachyon is sent if—and only if—it isn’t sent.

Since the event at which the tachyon was detected occurred outside the light 

cone of the origin, the return signal would have to exceed the speed of light 

and thus involve a second tachyon in order for the paradox to arise. In the 

ship’s reference frame, the second tachyon would travel forward in time, cov-

ering the spatial distance of length xd' back to the origin in a positive time less 

than –td' (remember td' < 0). Hence, the speed of the return tachyon must satisfy 

ur > xd' / (–td'), which, after some algebra, one can show implies that ur > u; that 

is, the tachyon used for the return signal must be somewhat faster than the 

original tachyon. The principles of relativity guarantee that if it was possible 

for observers in S(earth) to build a device that would produce tachyons travel-

ing forward in time in their rest frame, then it must also be possible for ob-

servers in S'(ship) to produce such tachyons in their rest frame, and thus send 

the return signal. Therefore, the existence of tachyons, coupled with special 

relativity, seems to result in paradoxes.

The Reinterpretation Principle

Sudarshan and his colleagues suggested a possible way around the problem, 

which they named the “reinterpretation principle.” To understand this, we 

must fi rst take a moment to consider some implications of special relativity 

for the energies of tachyons. For ordinary particles, it can be shown that the 

Lorentz transformations imply that the sign of the energy of a particle, just like 

the sign of the temporal order of two points on the worldline, is the same in 

all inertial frames. Therefore, all observers will see the particle as having posi-

tive energy, though they will disagree on how much energy it has. However, 

for a tachyon of energy E in the earth’s frame, it turns out that its energy E' in

the frame S'(ship) is given by E' = E

1− v2 /c2

⎛

⎝
⎜

⎞

⎠
⎟ (1− (vu / c2 ) . A glance at the

equation for td' reveals that E'  becomes negative when td' does. Thus, a tachyon 

that travels backward in time always has negative energy.

With this in mind, Sudarshan asked what would actually be seen by an ob-

server “living forward in time” in S'(ship) when the tachyon is detected at t'd. At 

that point the tachyon detector absorbs a tachyon from the future carrying neg-

ative energy. But absorbing negative energy is the same thing as losing positive 
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energy. (Incurring a charge of $1,000 on your credit card has the same eff ect 

on your net worth as taking $1,000 out of your checking account. In either case 

you are poorer by $1,000.) Thus, it will appear that the detector has lost energy 

by emitting a positive-energy tachyon that appears at t'd and continues to be 

present, appearing to be moving forward in time along with the observer. This 

will continue until t' = t = 0. This is the time at which the tachyon was originally 

emitted backward in time with negative energy E' by the tachyon production de-

vice, as seen in S'(ship). At that point the tachyon will seem to an observer living 

forward in time in S'(ship) to disappear into the production device. The observer 

will thus conclude that the device, rather than having emitted a negative-

energy tachyon traveling backward in time, has absorbed a positive-energy 

tachyon (actually it would be an anti-tachyon, the antiparticle of the tachyon, 

but we will skip over this technical point) traveling forward in time and thus 

coming from the past. These two processes again have the same physical ef-

fect. The absorption of positive energy or the emission of negative energy both 

lead to a gain in energy, just as either depositing a check or paying of a credit 

card balance of the same size increase your net worth by the same amount.

Sudarshan argued that observers in the ship would not recognize that they 

had received a message from the future. They would instead “reinterpret” the 

occurrence as the spontaneous emission of a tachyon from their detector. They 

would not recognize that they had received information from the future and 

thus would be unable to act on it to produce a paradox.

The diffi  culty with this analysis was pointed out rather quickly in two ar-

ticles, one by W. B. Rolnick and the other by G. Benford,1 D. L. Book, and W. A. 

Newcomb. Both articles agreed that the reinterpretation principle would allow 

one to avoid paradoxical consequences in cases where only a single tachyon was 

involved. However, by controlling the tachyon transmitter, one could send an 

extended message, say by Morse code, spelling out, “To be or not to be, that 

is the question.” While it might look to observers on the ship as though their 

transmitter was producing this at random, they would soon recognize that 

they were seeing an intelligible message. The odds against that happening by 

chance are astronomical, and thus they would conclude that someone had sent 

them a message. (You sometimes read something to the eff ect that if you put 

1. Professor Gregory Benford, who is a member of the faculty at the University of California, 

Irvine, has written a number of excellent “hard” science fi ction novels. An early one, Timescape, 

deals with using tachyons to warn the past about an impending ecological disaster. Although an 

excellent book, the fact that it is set in what is now the past may be somewhat jarring for contem-

porary readers, who may be more accustomed to science fi ction set in the future.
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a monkey at a typewriter and let it type randomly, it will eventually reproduce 

all the books in the British Museum. While there is a certain abstract sense in 

which this could be considered correct, it is so far from any practical signifi -

cance as to be basically meaningless. It would, in fact, take a monkey many 

times the accepted age of the universe since the big bang to reproduce a single 

page of this book.) Hence, the reinterpretation principle would not eliminate 

the possibility of communication with the past if tachyons existed.

A Problem with Superluminal Reference Frames

Given that tachyons seemed to lead to paradoxes, which were unacceptable 

and also unavoidable, Allen was inclined to give up his brief interest in the 

idea. However, he was collaborating actively on elementary particle physics 

projects with Adel Antippa, who had recently completed his PhD at Tufts under 

Allen’s supervision and was now on the faculty at the Université du Québec à 

Trois Rivières. Antippa had been bitten by the tachyon bug and was eager that 

he and Allen should also undertake a collaboration in this fi eld.

After some persuasion, Allen agreed to join in examining whether some fur-

ther developments might be made on the basis of a paper by Leonard Parker, 

a noted expert in the general theory of relativity, as Allen was to learn later, at 

the University of Wisconsin–Milwaukee. To understand what Parker had done, 

we should fi rst look at what had not yet been done. While tachyons were, by 

assumption, particles whose speeds exceeded the speed of light, the class of 

allowed inertial frames continued to be limited to those with subluminal ve-

locities relative to one another.

On the other hand, if tachyons existed, it is at least conceivable that they 

could be used to make clocks and meter sticks from which, in turn, reference 

frames could be constructed. Such reference frames, like their constituent 

particles, would presumably be superluminal, with speeds v > c relative to sub-

luminal reference frames. One would then need some generalization of the 

Lorentz transformations to relate the coordinates of events in superluminal 

and subluminal reference frames. Hopefully these would be such as to leave 

the speed of light invariant in going from one class of reference frames to the 

other, so that some kind of extended principles of relativity would exist.

Parker showed how to construct such a theory very neatly in a kind of “toy” 

spacetime that had, as usual, a time dimension, but only one space axis, let’s 

say an x axis. Sometimes, studying such toy spaces can give insight into the ac-

tual four-dimensional problem of interest. In the two-dimensional case, con-
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sider a superluminal frame with constant speed v > c relative to a subluminal 

frame. Parker’s transformation equations giving the coordinates of an event 

(t',x') in the superluminal frame in terms of the coordinates (t,x) in a sublu-

minal frame were simply the Lorentz transformation equations with the time 

and space axes interchanged in the superluminal frame. Thus, instead of hav-

ing (ct' )2 – x'2 = (ct)2 – x2, as for a subluminal transformation, the superluminal 

transformation gave –(ct' )2 + x' 2 = (ct)2 – x2. For the case of a light ray traveling 

in the x direction, when  (ct)2 – x2 = 0, the minus sign made no diff erence and 

the sanctity of the speed of light was preserved in both the subluminal and 

superluminal frames.

Antippa and Allen noticed that while, as usual, the temporal order of events 

along the worldline of a tachyon was not the same in all inertial frames, the 

spatial order along the x (and x' ) axis was. One could therefore consistently 

postulate that tachyons moved only in the positive x direction, just as ordi-

nary particles move only in the positive time direction. This would rule out 

paradoxes, since neither ordinary particles nor tachyons could return to both a 

time and position, that is, to an event, at which they had already been present, 

a necessary condition for creating a paradox.

All of this was very nice, but unfortunately only applied to a make-believe 

world with only one space dimension. Antippa and Allen did construct a four-

dimensional world with these features, but it was a very ugly world indeed. It 

had a preferred direction picked out, namely, the one along which the super-

luminal transformations were allowed. The trouble was that, in the real four-

dimensional world, there were three directions in space and only one in time, 

so two of the spatial axes were left without a temporal partner with which they 

could be interchanged. (There was a published proposal for a theory with three 

diff erent time directions. Allen actually spent a couple of days thinking about 

how you might give a physical interpretation to the other two time directions 

and then threw up his hands in surrender!)

A preferred direction in space was anathema in physics; it was like singling 

out a preferred inertial frame in special relativity, only worse. It is intuitively 

natural to assume that any direction in space is as good as any other. You might 

argue that down is clearly diff erent from sideways or up, but that’s only because 

of what is, in the grand scheme of things, a mere coincidence. The distinction 

between down and sideways is not telling us anything fundamental about the 

laws of physics, but only about the particular place in which we fi nd ourselves. 

It just happens that we live where there is a modest-sized astronomical body, 

the earth, in the “down” direction. And for that matter, of course, the down 
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direction in space for us is the up direction for our good mates in Australia, a 

mere 12,000 miles away on the opposite side of the earth. And 12,000 miles is 

pretty darn “mere” on the scale of the universe.

So it is intuitively simple and natural to think that nothing in the laws of 

physics picks out a particular direction in space as preferred. In physics, this is 

called the assumption that space is “isotropic.” Equivalently, we say that space 

is invariant, or symmetric, under rotations of the coordinate axes. We’ve al-

ready made use of this assumption a number of times in this book without 

stopping to think about it. We’ve assumed repeatedly, without really giving it 

any thought, that we could choose our coordinate system in a particular situa-

tion so that the x axis pointed in some particularly convenient direction.

In fact, not only does it seem simple and natural to assume that space is 

symmetric under rotations, there is abundant and extremely powerful exper-

imental evidence that this is the case. One of the most beautiful themes in 

theoretical physics, which recurs in many contexts, is the connection between 

symmetries exhibited by the laws of physics, and the existence of conservation 

laws that can be derived just from those symmetries. One of the most funda-

mental conservation laws, called the conservation of angular momentum, is 

a consequence of—and direct evidence for—the isotropy of space. It is not 

as well known as its more famous brethren, conservation of linear momen-

tum and conservation of energy (which also follow from symmetries). What, if 

anything, you may have heard about angular momentum will depend on your 

physics course background. However, conservation of angular momentum has 

applications that are equally widespread, and its validity is supported by exqui-

sitely precise measurements on the behavior of atomic nuclei.

So a theory of tachyons that involved a preferred direction was not terribly 

appealing aesthetically and could be viable experimentally only if the coupling 

of tachyons to ordinary matter was extremely weak, so the resulting violations 

of the law of conservation of angular momentum would be too small to be 

observed. Nevertheless, the idea that, if there were tachyons, there should be 

superluminal Lorentz transformations, seemed natural and prompted a good 

deal of discussion in the physics literature. Allen and Antippa did some ad-

ditional work on the model; in particular, they wrote a paper working out the 

form Maxwell’s equations for charged tachyons would take after a superlu-

minal coordinate transformation. They were joined in this endeavor by Louis 

Marchildon, a very capable student of Antippa. This gave Allen a chance to 

enjoy collaborating not only with a former student but with, so to speak, an 

academic grandchild. The most useful aspect of this paper was probably that 
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it corrected a rash of articles that had appeared in European journals claiming 

it was possible to construct a theory of superluminal coordinate transforma-

tions that did not involve the introduction of a preferred direction. Allen and 

his collaborators were able to demonstrate, beyond question, that these papers 

were mathematically inconsistent.

What about Experimental Evidence?

Finally, we should discuss the experimental evidence with regard to the exis-

tence of tachyons, since physics is, after all, an experimental science. There 

were no experiments that provided any reason to believe in the existence of 

tachyons. With no knowledge of their properties (mass, charge, interactions 

with subluminal matter), it was diffi  cult to design experimental searches. 

However, there were two somewhat related arguments that raised strong ob-

servational doubts concerning their existence. Both grew out of the fact that, 

unlike an ordinary particle, the energy of a tachyon did not have the same sign 

in all inertial frames.

First, let’s look at the possible radioactive decays of a proton with the emis-

sion of a tachyon. We’ll work initially in the inertial frame in which the proton 

is at rest, which we’ll call S(rest). Normally, we would say that the decay of 

such a proton is forbidden by conservation of energy. Initially the momentum 

equals zero, since the proton is at rest, and the only energy is that associated 

with the proton mass, mpc
2. The emission of a decay particle will cost the mass 

and kinetic energy of the decay particle, which are always positive. In addi-

tion, since the decay particle will in general have momentum, the proton will 

have to recoil in the opposite direction so that the total momentum of the two 

particles together remains zero. This means that the proton will also have non-

zero kinetic energy after the decay. Hence, the fi nal energy of the system will 

necessarily be greater than the initial energy, and the decay will be forbidden 

by conservation of energy.

The proton itself can’t disappear or change its internal state because of an-

other conservation law called the conservation of baryon number. Currently 

fashionable theories suggest that, in fact, the proton may decay into a positron 

and other light particles, with most of the mass energy of the proton going into 

kinetic energy of the decay particles. This process violates the law of conserva-

tion of baryon number, since the proton has baryon number and the lighter 

particles do not. However, since current experiments indicate that the half-life 

for this process cannot be less than about 1033 years, or about 1023 times greater 
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than the lifetime of the universe, nonconservation of baryon number can safely 

be ignored for most purposes. This enormous timescale means that the likeli-

hood of an individual proton decaying is extremely small. However, if you look 

at a large enough number of them, you should see at least a few of them decay. 

There are ongoing experimental eff orts to observe proton decay by looking for 

an occasional event in very large tanks of water, located in mines deep under-

ground to shield them from so-called background reactions. These are other 

processes which can look to the experimenters like proton decay. Since a given 

proton has about a chance of 1 in 1033 of decaying in a year, the tank of water 

should contain at least 1033 protons in order to observe roughly 1 decay per 

year. If you are one of the leaders of an experimental group that is successful 

in this endeavor, you can safely start packing for a trip to Stockholm and the 

next Nobel Prize award ceremonies.

However, since the sign of the energy of a tachyon is not Lorentz invariant, 

if the decay particle is a tachyon it may have negative energy in the proton rest 

frame, and the earlier argument based on nonconservation of energy does not 

work. This is because one can always fi nd a negative energy and correspond-

ing momentum for the tachyon, such that the negative energy of the tachyon is 

balanced by the positive recoil energy of the proton. Therefore, the total energy 

and momentum are conserved and the emission of a tachyon is allowed. The 

process could be described by the following equation:

Proton Decay in Rest Frame

p(mc2) → p(mc2 + ET) + T (–ET)

This is an equation of the sort chemists use to describe chemical reactions. 

Here, p and T stand for proton and tachyon, respectively. The arrow indicates 

that a process occurs in which the particle or particles on the left side of the 

arrow are transformed into those on the right. The arrow may be read as “be-

comes” or “goes to form.” Here, mc2 is the initial energy of the proton and – ET, 

where ET is positive, is the energy of the emitted tachyon. Since the tachyon en-

ergy is negative, it will be traveling backward in time. Conservation of energy 

is satisfi ed, since mc2  = (mc2 + ET) – ET.

If protons at rest decay by the emission of tachyons, the recoiling protons 

should make tracks in a bubble chamber. These are devices in which moving 

charged elementary particles leave behind tracks composed of small bubbles. 

Searches were actually done in stacks of old bubble chamber photographs 

left over from previous experiments performed for other reasons, looking for 
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tracks left by recoil protons from spontaneous decay of a proton into a proton 

and a tachyon. (The tachyons might be electrically neutral, in which case they 

would leave no track in the bubble chamber.) None were found.

Advocates of the reinterpretation principle would say that what would really 

be seen here was not the emission of a negative energy tachyon, which would 

travel backward in time, but the absorption by the proton of a positive energy 

anti-tachyon traveling forward in time. They would say the process observed 

would be described by the following equation:

Proton Decay in Rest Frame according to Reinterpretation Principle

 p(mc2) + T (ET) → p(mc2 + ET).

In this reaction, an incoming tachyon collides with the proton and is absorbed, 

transferring its positive energy to the proton. They would argue that nothing 

was observed, because it was quite possible that there weren’t many positive 

energy tachyons wandering around in empty space. Note the conservation of 

energy is also satisfi ed here since the change in sign of the tachyon energy is 

compensated by the fact that the tachyon energy has been taken from the right 

(fi nal energy) side of the conservation of energy equation to the left (initial 

energy) side of the equation. The change in sign and switch in sides of the 

equation thus compensate one another.

However, there is a problem with this explanation. We can always fi nd a 

moving inertial frame, let’s just call it S'(moving), in which the energy of the 

tachyon is positive. By the principles of relativity, we know that if the decay is 

allowed by the conservation laws in S(rest), it will also be allowed in S'(moving). 

Since this is not its rest frame, the proton will be initially moving and thus will 

have kinetic energy. In this frame, the decay process will involve the loss of 

kinetic energy by the proton, with the lost energy being converted into the pos-

itive energy tachyon. The reaction would be described by the equation:

Proton Decay in S'(moving)

p(E') → p (E'–ET') + T(ET').

The primes indicate that these are the energies in the frame S'(moving) where 

the proton had a large initial kinetic energy and the tachyon energy ET' is 

positive.

Having positive energy, it will be seen to travel forward in time by observers 

in S'(moving) and thus will unambiguously be seen as an emission process, 

which does not require the absorption of an incoming particle. The tachyon 
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viewed as emitted in S'(moving) will appear in the proton’s rest frame as the 

required incoming anti-tachyon (don’t worry about the “anti” business—we’re 

just being pedantic), whose absorption gives kinetic energy to the proton that 

was initially at rest in that frame. Thus, it would seem that the existence of 

tachyons, if they are coupled to protons or other subluminal particles, would 

give rise to an unobserved decay of those particles into tachyons. In the particle 

rest frame, this would appear as the absorption of a positive energy particle. 

One can, of course, avoid any disagreement with experiment by assuming the 

coupling of tachyons to ordinary matter is suffi  ciently weak. Of course, if that 

coupling becomes too weak, the tachyons become essentially unobservable 

and therefore of no interest.

A similar problem arises in the consideration of high energy cosmic ray 

protons incident on earth after crossing galactic or intergalactic distances. 

In this case, the earth plays the role of S'(moving), relative to which decaying 

particles are in motion. Since the decay of protons at rest into negative energy 

tachyons is allowed by the conservation laws, at high enough speeds relative 

to S'(moving), where the decay tachyons have positive energy, the decay will 

also be allowed. This means that, in the earth frame, the cosmic ray protons 

will emit positive energy tachyons and lose energy by tachyon emission. The 

fact that cosmic ray protons are able to retain their extremely high energies 

over periods of time, probably of the order of millions of years, again implies 

that if tachyons exist, their coupling to ordinary matter must be exceedingly 

weak. (You might be wondering why high-energy cosmic rays don’t decay into 

ordinary particles by converting their kinetic energy into the energy of decay 

products. The answer again lies in the principles of relativity, which assure us 

that all inertial frames are created equal. Therefore, we can look at the problem 

in the rest frame of the cosmic ray particle, where it has no kinetic energy, and, 

as we discussed above, the decay is forbidden by conservation of energy. The 

point is that if a decay process is forbidden or allowed, respectively, in one in-

ertial frame, the principles of relativity assure us that it is forbidden or allowed 

in all inertial frames.)

By the early 1980s, the fi eld of tachyon physics appeared to have about 

run its course. The idea had been interesting and deserved the exploration 

it received. Most importantly, it led to a wider understanding of the connec-

tion between superluminal travel—or, in the case of tachyons, superluminal 

 communication—and the problem of paradoxes associated with backward 

time travel. However, as far as theory went, tachyons ultimately seemed to leave 

one with a choice between what were regarded as unacceptable paradoxes or 



“Forward, into the Past” > 75

the equally distasteful introduction of a preferred direction in space. Observa-

tionally, although this had received less discussion, the existence of tachyons 

seemed to imply unobserved and unwanted decay processes for subluminal 

matter. As a result, interest in tachyons declined rapidly and pretty much faded 

away, fortunately along with the steady stream of tachyon-related manuscripts 

Allen had been receiving from Physical Review to referee.

In fact, the term “tachyon” still appears in the literature in connection with 

what is called string theory, but in a rather diff erent context. String theory 

tachyons are quantum states that have a negative mass squared. These states 

are not, however, taken to be associated with free particles zipping around 

with superluminal speed. The connection of these tachyons to the tachyonic 

particles of the kind already discussed is this: if you use the same formula, 

E
t

= m
t
c2 / 1− v2 /c2( ) , for the energy of a tachyon as a conventional particle, 

then mt must contain a factor of i and mt

2
 must contain a factor of i2 = –1, be-

cause one has the square root of a negative number (thus, a factor of i) in the 

denominator. We avoided this by taking the denominator to be (v2 / c2 ) − 1 so 

that mt can be a real number. The two procedures are in fact equivalent, since 

the factor of i, when present, always cancels out. Taking mt to be imaginary 

does not run afoul of the rule that physical observables must be real, because 

mt is not an observable. It is the so-called rest mass, which gives the mass, or 

equivalently, Et / c
2 of the particle when it is at rest. But tachyons are never at rest.

Allen returned his full attention to elementary particle physics and, in par-

ticular, to a newfound interest in the connections between particle theory and 

cosmology. Happily this forced him to make some eff orts to strengthen his 

rather sketchy knowledge of Einstein’s general theory of relativity. This was to 

prove useful when, about fi fteen years later, he found himself thinking again 

about problems that were familiar from his work on tachyons, but this time 

largely in the context of general rather than special relativity. Two of his Tufts 

colleagues were working on these or related questions. One of these, Larry 

Ford, whose offi  ce was next door to Allen’s, had begun a very active collabora-

tion with a fellow named Tom Roman.
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7
The Arrow of Time

If someone points out to you that your pet 

theory of the universe is in disagreement 

with Maxwell’s equations—then so much 

the worse for Maxwell’s equations. If it is 

found to be contradicted by observation—

well these experimentalists do bungle things 

sometimes. But if your theory is found to be 

against the second law of thermodynamics 

I can give you no hope; there is nothing for 

it but to collapse in deepest humiliation.

sir arthur stanley eddington, 

The Nature of the Physical World

Things are as they are because 

they were as they were.

thomas gold

As we discussed in the last chapter, it is a 

  basic assumption of physics, backed by 

very strong experimental evidence, that the laws of physics do not distinguish 

between diff erent directions in space. To take a trivial example, suppose we 

have a container, which is isolated from the rest of the world and divided in 

half by a vertical barrier of some sort, oriented so that the barrier runs north-

south. Suppose we fi rst observe the container at a time t = −t0. At that time, 

the western half of the container is fi lled with air, but the other half has been 

pumped out so that it contains vacuum. We also assume that there is a valve in 

the barrier that may be opened to allow gas to fl ow from one side to the other. 

If the valve is opened at t = 0, then almost at once half the gas will fl ow from 
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west to east into the hitherto empty eastern half of the container. Thus, prior 

to the opening the valve all the gas is in the western half, while in the future of 

the opening, that is, at t > 0, the container will be fi lled with a uniform density 

of gas.

What if we repeat the experiment with the initial orientation of the can re-

versed, so that it is the eastern half which is initially full? Without even think-

ing about it, we know the answer. The gas will again fl ow from the full side 

into the empty side, this time, from east to west, until, after the opening of the 

valve it is distributed uniformly throughout the container. The laws of physics 

make no distinction between east and west. However, the gas always goes from 

a nonuniform distribution in the past to a uniform distribution in the future. 

We never see a process that would appear to us as a uniform distribution of gas 

throughout the can turning spontaneously, as time increases, when the valve 

is opened, into a distribution where all the gas is in just half the can. This is an 

example of a clear physical distinction between the positive and negative time 

directions. The laws of physics, thus, do make such a distinction. Physicists 

and philosophers often refer to such a distinction as an “arrow of time” point-

ing from the past toward the future whose direction has an origin in the laws 

of physics.

How does this asymmetry between past and future arise? Surprisingly, the 

basic equations of physics do not distinguish the negative and positive time 

directions, that is, the past and future. These equations are Newton’s laws of 

motion for systems that are adequately described by classical mechanics and 

the corresponding quantum mechanical equations for systems where quantum 

corrections are important. Both sets of equations possess a property called 

time-reversal invariance. Because of this property, these basic equations do not 

themselves distinguish between the positive and negative time directions. 

Newton’s laws themselves do not defi ne an arrow of time.1

1. In the case of quantum mechanics, time-reversal invariance is only approximate. The quan-

tum mechanical equations describing the radioactive decay of certain elementary particles do 

distinguish the two directions of time. These particles have very short half-lives; therefore, they 

occur only when they are produced at very large terrestrial particle accelerator laboratories or, 

 occasionally, by very high energy cosmic ray particles incident from outer space. When produced, 

they decay almost at once into more “ordinary” elementary particles that obey time-reversal in-

variance. It is thus diffi  cult to imagine that the distinction between past and future in the laws 

governing these objects has anything signifi cant to do with the obvious distinction between past 

and future which we encounter in our everyday lives (on the other hand, some physicists, such 

as the mathematical physicist Roger Penrose, believe that nature is providing us here with a very 

important clue).
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Let us examine this property of time-reversal invariance in detail. To begin 

with, suppose we have a system which contains some number N of particles. 

We describe the system by giving its initial conditions at t = −t0. The initial con-

ditions are the position and momentum (or equivalently, the velocity) of each 

particle. This requires specifying a total of 6N numbers, since for each particle 

we must give its position and momentum in the x, y, and z directions. The laws 

of physics plus the initial conditions then determine the state of the system for 

all t > −t0, in particular, at t = +t0.

Now imagine a second system, which we will call the time-reversed sys-

tem, with the same number of particles. We specify its initial conditions at 

t = −t0 in the following way. We will take the position of each particle in the 

new system at t = −t0 to be the same as that of the corresponding particle in 

the original system at t = +t0. The momentum of each molecule in the time-re-

versed system, however, is taken to have the same magnitude—but exactly the 

opposite  direction—as the momentum of its partner in the original system. In 

our example, then, the time-reversed system at t = −t0 would be a gas with its 

molecules distributed uniformly throughout the container, at the same posi-

tions as the molecules of the original gas at t = +t0, and with momenta of the 

same magnitude but in exactly the opposite direction as the momenta of the 

corresponding molecules in the original gas.

Then the consequence of the property of time-reversal invariance is that, 

according to Newton’s laws, each molecule of the time-reversed system will 

run backward along the same path followed by the corresponding molecule 

in the original gas. Watching the actual behavior of the time-reversed system 

would be indistinguishable from watching a movie or video of the original 

system being run backward. In particular, at t = +t0, the molecules of the time-

 reversed system will be at the same position as the molecules of the original 

gas at t = −t0. Thus, the gas in the time-reversed system will spontaneously 

fl ow back until it occupies only half the container!

The fact that the distribution in space of the molecules of a gas in a con-

tainer becomes more uniform as time increases is thus not a consequence of 

some property of Newton’s laws. Time-reversal invariance shows you how 

to fi nd initial arrangements of the molecules in a gas which, evolving under 

Newton’s laws, will tend to rush into one region of space, rather than becom-

ing uniform, as time increases.

To illustrate how strange this result is, let’s look at another, perhaps more 

familiar, example. Suppose you have a movie or video of a person diving off  a 

diving board into a pool. Sometimes, as a joke, people run such a thing back-
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ward. What you see when you do this is comical, because you see the obviously 

preposterous sight of the diver emerging feet fi rst from the pool and fl ying 

backward to land on the board. Obviously such things don’t happen. They 

never happen. Yet, your authors are claiming that, because of time-reversal in-

variance, the following is true. Suppose you were to start the physical system 

of the diver’s body plus the water in the pool in the time-reversed state of the 

actual state after the diver enters the water, which is a conceivable starting state 

of the system. Then the actual result, according to the laws of physics, would 

be the same as you see when you run the video of the dive backward. But we’ve 

just said that such a thing would obviously never happen. You could certainly 

be forgiven for thinking that either the authors or the laws of physics have 

gone off  their rocker.

However, the situation is not quite that bad. It is true that, because of time-

reversal invariance, the laws of physics do guarantee that there is a state of the 

gas molecules, that is, a set of initial or starting values for the position and ve-

locity of each gas molecule, which would lead to their spontaneously rushing 

into half the box. There is even a state of the molecules in the pool and the div-

er’s body that would lead to her fi nding herself suddenly shot out of the pool 

and back to the diving board. However, as we’re about to see, one of the most 

important laws of physics tells us that, while in principle these things could 

happen, as a practical matter they never do and never will. The probability of 

such things happening is so absurdly small that one would have to wait for a 

time equal to the age of the universe multiplied by an incomprehensibly large 

number before ever seeing all the gas molecules in a container of ordinary size 

spontaneously, as a result of their random motion, rush into half of the con-

tainer. This law, called the second law of thermodynamics, together with a new 

physical quantity we have not yet encountered, called entropy, is the subject of 

the next section. You might, by the way, justifi ably ask why we are starting with 

the second law. In fact, you already know the fi rst law of thermodynamics. It’s 

a name often used in the branch of physics called thermodynamics for the law 

of conservation of energy.

Entropy, the Second Law of Thermodynamics, 
and the Thermodynamic Arrow of Time

There are two diff erent ways of specifying the state of a system, such as the 

molecules of a gas in a closed container. What we actually observe about such a 

system are a few macroscopic (i.e., large-scale) properties of the system. Let’s 



80 < Chapter 7

consider gas in a closed container. We’ll suppose the gas is in equilibrium, by 

which we mean that its observed properties are not changing in time. Then the 

observed state of the system can be specifi ed by just three measurable quanti-

ties, which can be taken to be, for example, the volume of the container and 

both the temperature and the total mass of the gas in the container. The tem-

perature is a measure of the average kinetic energy of the individual molecules 

as they bounce randomly around inside the container, colliding with one other 

and the walls as they do so. The total mass of the gas determines the chemical 

composition of the gas and N, the total number of molecules in the container. 

(There is also the pressure of the gas, which is the force per unit area the gas 

molecules exert on the walls of the container as they hit the walls and bounce 

off . This, however, is not an independent quantity but is determined by a physi-

cal law, called the equation of state, from the other three.) The state of the gas, 

expressed in this way, is called the macrostate.

However, while the macrostate specifi es what we can easily observe, it is 

very far from providing a complete description of the state of the gas. To do 

that, we would have to give the full set of 6N numbers specifying the individual 

positions and momenta of each molecule. This is called the microstate of the 

system.

Of course, we can never know the particular microstate of the system, which 

is, moreover, continually changing in time as the molecules move about and 

collide randomly. Knowing the macrostate only determines various average 

properties of the microstate, and there are a huge number of possible micro-

states that are consistent with a given macrostate. Often, there is nothing in 

the physics to make any one of the microstates that are compatible with a given 

macrostate more probable than any other. Hence, each is equally probable, 

and the total probability of fi nding the system in a given macrostate is just pro-

portional to the total number of microstates compatible with the macrostate 

in question; we will call this number n. (Do not confuse N, the number of mol-

ecules in the container, with n, the number of possible microstates for some 

given macrostate. While n depends on and increases with N, the two numbers 

are in general very diff erent.)

It turns out that for a technical reason it is more useful to deal, not with n, 

but with a parameter called the entropy, for which we will use the symbol s, 

which is defi ned as the logarithm of n, that is, s = log n (you need to distinguish 

s from S, which we will continue to use to label an inertial reference frame). 

One advantage of s is that it is easy to show that, unlike n, the total s for two 

separate systems is just the sum of the entropy for each one separately. As you 
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probably learned at some point, the meaning of log n is n = 10log n. From the 

defi nition you can see that as n gets bigger, so does log n. From the defi ni-

tion, s = log n, the entropy s must also increase as n increases.2 However, log 

n is much smaller than n. For example, 1,000,000 is 106, so the logarithm of 

1,000,000 is only 6. Nevertheless, in cases like the gas molecules in a box, n is 

such a fantastically large number that the entropy is also very large.

Since n increases when the entropy increases, a macrostate with higher 

entropy will always be consistent with more microstates, and thus be more 

probable than one with lower entropy. As time goes on, systems tend to evolve 

from states of low probability to states of high probability. Therefore, an iso-

lated system will always go from a state of entropy s1 at time t1 to one of entropy s2 ≥ s1, at 

time t2, if t2 > t1. (The case s2 = s1 will usually occur only if constraints prevent the 

system from evolving into a state of higher entropy). That is, entropy increases 

(or possibly stays the same) as one goes forward in time. This statement is the 

second law of thermodynamics. Note this means that if t2 < t1, then s2 ≤ s1, since then 

the entropy cannot decrease in going from t2 to t1. Thus, entropy decreases—or 

possibly stays the same—as you go backward in time.

The second law thus provides an “arrow of time.” That is, it distinguishes 

between the two directions of time. The positive direction in time is the direc-

tion of increasing entropy, for example, the direction in which the molecules 

fl ow from half the container to fi ll the whole container. There are many more 

(not just two more, by the way) possible arrangements of the molecules when 

the whole container is available; that is, the entropy is much, much higher, when 

the molecules occupy the whole container. Similarly, the second law guaran-

tees that the molecules will never fl ow spontaneously back into just half of the 

container as time increases, since that would correspond to an entropy de-

crease. Even though, as we saw, Newton’s laws allow microstates of the system 

that would lead to this behavior, the proportion of such states, and hence, the 

probability of seeing the system undergo such an event, is so small that it just 

“ain’t gonna happen.” If you spend your life waiting around to see an observ-

able violation of the second law, you’ll be disappointed.

Due to the increase in entropy mandated by the second law, a system will 

evolve rapidly until the entropy becomes essentially equal to the maximum 

entropy allowed by the constraints on the system, such as the size of the con-

tainer. At that point, further change in the system is inconsistent with the sec-

2. Strictly speaking this is the natural logarithm, i.e., the logarithm to the base e, where e ≈ 

2.71828 . . . , but it makes no substantive diff erence to our argument.
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ond law. The state of the system in which the entropy has its maximum value is 

the equilibrium state, in which the observable properties of the system remain 

constant. Further observable evolution of the macrostate can occur only if one 

makes some change in the constraints of the system, for example, by opening 

a valve. In fact, however, unobservably small violations of the second law do 

occur continually due to very tiny statistical fl uctuations of the entropy away 

from its maximum value, which quickly vanish as the inescapable hand of the 

second law makes itself felt.

A system in equilibrium, very near its state of maximum entropy, has no 

thermodynamic arrow of time. The fact that our world does have such an arrow 

means that it is very far from equilibrium. Its initial conditions at very large 

negative time were such that its entropy was very low, and, as mandated by the 

second law, began to increase with time—an increase that is still, on the aver-

age, going on. Thus, we can say that the time asymmetry arises not from the 

laws of physics themselves but from the initial conditions of our universe.3

We will assume for the moment that the gas molecules in our box interact 

only by direct physical contact, either when they collide with one another or 

with the container walls. The equilibrium state of the gas is then one in which 

its properties are uniform throughout. It is relatively easy to demonstrate that 

uniformity maximizes the number of possible microstates and, hence, the en-

tropy. We’ve just seen one example of this; let’s look at another. Consider a 

system that initially contains hot coals and cold ice cubes thermally isolated 

from one another so that heat cannot fl ow between them. If the insulation is 

removed, heat fl ows from hot to cold until the system reaches a uniform tem-

perature throughout. This happens because a state of uniform temperature 

maximizes the entropy of the combined system. Note that it is the system as a 

whole that is governed by the second law. The entropy, and thus the number of 

possible microstates, of the coals actually decreases as they cool, but the num-

ber of possible microstates of the system as a whole is increased by remov-

ing the constraint that the temperature of the coals be greater than that of the 

ice cubes.

3. Penrose has argued that these initial conditions must have been rather special. He feels that 

the key question in understanding the ultimate origin of the second law is, why was entropy lower 

in the past? Penrose attributes the second law to conditions on the big bang singularity in which 

the universe began. For a more in-depth discussion of this issue, see Roger Penrose’s The Emperor’s 

New Mind (New York: Oxford University Press, 1989), especially chapter 7, and The Road to Reality 

(London: Jonathan Cape, 2004), especially chapter 27. A more recent semipopular treatment is by 

Sean Carroll, From Eternity to Here: The Quest for the Ultimate Theory of Time (New York: Dutton, 2010).
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One can, of course, make ice cubes in a refrigerator. During this process the 

entropy of the refrigerator and the surrounding kitchen is reduced. But this vi-

olation of the second law does not occur spontaneously. To bring it about, one 

must do work to pump heat out of the cold refrigerator into the warm kitchen. 

To generate the required electric power and deliver it to the refrigerator re-

quires a series of processes, such as burning fuel at the electrical generating 

plant, which produces more entropy than was lost by cooling the refrigerator. 

When one does a careful accounting, one always fi nds that the total entropy of 

the entire system involved increases as time increases.

Before we leave the subject of entropy, we should mention another bit of 

terminology that is often used. An increase in the entropy of a system is often 

described as an increase in the system’s disorder. Another way of saying this 

is to observe that, as a system’s entropy increases, we lose information about 

the system. When the entropy is low, it means the system is in one of a com-

paratively small number of microstates, for example, all the gas molecules are 

known to be in one half of the container. As the entropy increases, we have less 

and less information about the system. That is, the number of possible micro-

states of the system becomes larger, and its behavior becomes more random, 

or more and more disordered. Using this language, one may rephrase the sec-

ond law as saying that physical systems become more disordered as time increases.

To give an example, a rock colliding with a plate glass window causes the 

glass to shatter into a highly disordered set of glass fragments with many un-

predictable details, that is, with many possible microstates. The exact pattern 

of the glass fragments would be quite diff erent each time any window was bro-

ken. The entropy of the glass-rock system thus increases when the glass shat-

ters into disorganized glass fragments. The shattering of the window is thus 

consistent with the second law. On the other hand, the second law forbids the 

process in which the glass fragments spontaneously reassemble as the rock 

leaps from the ground and goes fl ying off .

It is important to emphasize the inclusion of the word “isolated” in the 

statement of the second law. This again refers to a system that is left on its own 

without any interference from the outside world. Otherwise, one can be led 

into all sorts of misstatements. For example, one (frequently found in pseudo-

science books) is that the evolution of life on earth, in which systems with 

lower entropy (higher complexity) arise from ones with higher entropy (lower 

complexity), violates the second law! This spurious argument then sometimes 

is used as a justifi cation for the necessity of a “Creator.” The fallacy in this 

argument, of course, is that the earth is not an isolated system, since it re-
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ceives energy from an outside source, namely, the sun. The total entropy of the 

earth increases as it absorbs solar radiation. This is not inconsistent with the 

local decreases of entropy required to produce the evolution of living things of 

greater and greater complexity.4

Cause, Effect, and the Causal Arrow of Time

The arrow of time that we have been discussing, provided by the direction in 

which entropy increases, is called the “thermodynamic arrow of time.” There 

is a second physical principle, called the “principle of causality,” which also 

distinguishes the two directions in time. The principle of causality states that 

the laws of physics are such that causes always precede eff ects in time. When 

relativity is taken into account, this can be restated more precisely by saying 

that an event at a given point in spacetime can only have an eff ect on other 

events which occur in (or on) the forward light cone of that point, as we already 

discussed in chapter 4. (This assumes there are no tachyons.)

In order to explore the principle of causality more fully and to understand 

the relation between the two arrows of time, we need to consider the mean-

ing of the terms “cause” and “eff ect” more carefully. These are words we use 

constantly and of which we have an intuitive understanding. However, in the 

context of physics, we need to sharpen that understanding.

Precisely what do we mean by the statement that one event is the cause of 

another? Suppose some event happens and is then followed by a second event. 

We may have a tendency to think the fi rst event is the cause of the second. 

For example, suppose that in the fi fth inning of a baseball game, the baseball 

pitcher for the home team is pitching a no-hit game (that is, the opposing 

team has not made any hits) and the TV announcer describing the game men-

tions this fact. If, subsequently, an opposing batter gets a hit, many fans in the 

audience will be furious, insisting that the pitcher lost his no-hitter because 

the announcer “jinxed” the pitcher by breaking a time-honored taboo against 

mentioning a no-hit game in progress.

Are the two events causally related, or is it simply a matter of coincidence? 

It is impossible to prove. Would the pitcher have gotten his no-hitter if the 

announcer had kept his mouth shut? We don’t know. No-hitters are very rare. 

Statistically it is likely, if there are several innings remaining, that some batter 

4. A detailed argument is provided in Penrose, Emperor’s New Mind, chapter 7, and Road to Real-

ity, chapter 27.
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is going to get a hit before the end of the game, with or without the interven-

tion of the announcer. These authors (one of whom is an avid baseball fan), 

at least, are of the opinion that blaming the announcer would be an example 

of what is called the post hoc ergo propter hoc (Latin for “after this, therefore be-

cause of this”) fallacy. This is the fallacy of assuming that, simply because one 

event follows another in time, they are causally connected. If you were really 

determined to establish a causal relationship, you would need to undertake a 

statistical analysis of the relative likelihood of no-hitters remaining intact in 

circumstances where the TV announcers have and have not mentioned them.

Suppose that you fi nd identical pairs of events, call them type A events and 

type B events, always occurring together on a number of occasions, in essen-

tially identical circumstances. Sometimes we say that A and B occur in “con-

stant conjunction.” Let’s say that every time there’s an A, it’s followed by a B: the 

occurrence of an A event is both a necessary and a suffi  cient condition for guar-

anteeing the subsequent occurrence of a B event. For example, every time you 

throw a switch, a light comes on (suppose it’s a fl uorescent light so that there 

is a perceptible time interval between throwing the switch and the light coming 

on, which makes the temporal order is easily observable). We would then begin 

to feel confi dent that there was a causal relationship between A and B.

The conjunction between the two events would not need to be absolutely 

constant (occasionally there might be a power failure or the bulb might burn 

out). To establish a causal relationship, only a statistically signifi cant correla-

tion between throwing the switch and the light coming on would be required. 

The defi nition of “statistically signifi cant” would be somewhat arbitrary. How-

ever, in many cases, as a practical matter, there would be no doubt that the 

correlation was signifi cant. For simplicity we will assume this is the case and 

continue to speak of “constant” conjunction without worrying about statistical 

questions.5

5. In quantum mechanics, there is a phenomenon known as “entanglement,” whereby two 

components of a quantum system are “linked” in some sense, even over spacelike distances. For 

example, we can have two particles which interacted at one time, but are now (in principle) arbi-

trarily far apart. They can have a property called “spin,” which according to the laws of quantum 

mechanics can only have two directions: call them “up” and “down.” If the particles are in what’s 

called an “entangled state,” then a measurement by one observer on one of the particles is corre-

lated with a similar measurement made on the other particle by a second observer. If one observer 

measures the spin of particle 1 to be up, he knows the other observer will always measure the spin 

of particle 2 to be down, for example. At fi rst sight, this might look like superluminal signaling, 

if the particles can be arbitrarily far apart. This, however, is not the case. To use this as a signaling 

system, say to type out a series of dots and dashes, an observer would have to be able to control 
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Having satisfi ed ourselves that there is a causal relation between A and B 

events, we now ask ourselves, “Which is the cause and which is the eff ect?”6 

We’re immediately tempted to answer that question by saying that obviously 

A is the cause since the A events precede the B events. But by proceeding in 

this way, we would be reducing the statement that the cause always precedes 

the eff ect to a mere matter of defi nition rather than a fundamental physical 

principle. If we believe that there is a fundamental principle of causality, ac-

cording to which the cause always precedes the eff ect, there must be a way 

of distinguishing cause from eff ect in some way other than by their temporal 

order. We cannot do this if, in fact, A and B always occur together, so that A 

is both necessary and suffi  cient for B. Constant conjunction is a symmetrical 

relationship. If A occurs B occurs, and vice versa. The only distinction between 

A and B, and hence, the only way of saying which is cause and which is eff ect, 

is their temporal order.

To have a meaningful principle of causality, we must break the constant 

conjunction and fi nd a situation where A or B occurs without the other one. 

Suppose we fi nd that the occurrence of A is a suffi  cient but not a necessary con-

dition for B to occur. Thus, B always occurs when A occurs, so it is reasonable 

to say that A causes B. However B can occur without A, so B does not necessarily 

cause A. In the case of our switch and fl uorescent bulb, this would mean that 

whenever the original switch is on, electric current fl ows through the bulb. 

However, it could be that the bulb is also connected to a second source of cur-

rent through a diff erent switch, and turning that second switch on causes the 

bulb to light without the fi rst switch being thrown. In this situation then, we 

can say that event A, throwing the fi rst switch, causes the eff ect B, the bulb 

lights. We have thus identifi ed the cause and eff ect without any mention of 

temporal order. We can now ask, as a question of experimental fact, whether 

the cause, as we have identifi ed it, occurs before or after the eff ect. One fi nds, 

of course, that in situations of this sort the cause always precedes the eff ect. 

ahead of time which way his spin measurement will come out, and thus what the other person sees. 

The laws of quantum mechanics—notably the uncertainty principle—make this impossible, even 

in principle. So although we can say that the two particles are correlated, we can’t really say that the 

measurement of one causes what happens to the other. When the observers get together and com-

pare notes after the experiment, they will fi nd that every time the fi rst observer measured particle 1 

with spin up, the other observer measured particle 2 to have spin down. Sure is strange, though!

6. The following discussion is largely based on a talk by Roger B. Newton, which is published 

in Causality and Physical Theories: Conference Proceedings No. 15 of the American Institute of Physics, edited 

by William B. Rolnick, 49−64 (New York: American Institute of Physics, 1974).
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The laws of physics thus embody a principle of causality and give rise to a 

causal arrow of time whose direction is such that the cause always precedes 

the eff ect. Another way of saying this would be to say that the causal arrow of 

time points from an event into its forward light cone, and that an eff ect always 

occurs in (or on) the forward light cone of its cause.

From what we have said so far, it is possible that the thermodynamic and 

causal arrows of time could have pointed in diff erent directions. It is an experi-

mental fact that this does not happen.

The Cosmological Arrow of Time

There is still a third7 arrow of time, which takes its direction from the evolu-

tion of the universe as a whole. Observation shows that the distance between 

any given pair of objects in the universe, for example, a pair of galaxies, is 

increasing with time. In other words, the universe is expanding. Thus, we can 

introduce a third, or cosmological, arrow of time, which is defi ned to point 

in the direction in time in which the size of the universe is increasing. Experi-

mentally, this is the positive time direction, which is the same direction as the 

thermodynamic (and causal) arrows.

Is this coincidence, or could we have predicted it? We know that the ther-

modynamic arrow, because of the second law, points in the direction in which 

entropy increases. Since the cosmological arrow points in the direction of 

expansion, one would be tempted to say that it also obviously points in the 

direction of increasing entropy, because the cosmological expansion is just 

like the gas molecules whose entropy increases when they expand to fi ll the 

whole container. While the conclusion is correct, the reasoning required to 

reach it is more complex in the cosmological case because the universe is a 

more complex system.

When we were talking about the container of gas molecules, we made a 

simplifying assumption. We didn’t make much of it at the time or explain why 

we were making it, and you may well not have noticed it, but we said we would 

assume that the gas molecules interacted only by direct physical contact with 

7. There are a number of other of arrows of time we have not discussed. Penrose mentions 7. 

For a more detailed technical discussion, see his “Singularities and Time-Asymmetry,” in General 

Relativity: An Einstein Centenary Survey, edited by S. W. Hawking and W. Israel, 581−638 (Cambridge: 

Cambridge University Press, 1979). A more popular account of some of the arrows of time can be 

found in Paul Davies, About Time: Einstein’s Unfi nished Revolution (New York: Simon and Schuster, 

1995), chapters 10 and 11.
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each other or the walls. In particular, we were excluding the possibility of any 

long-range force acting between distant molecules. In that case it was obvious 

that the entropy increased, that is, there were more possible microstates avail-

able after the gas expanded, because then there was a wider range of possible 

position coordinates available to the gas molecules.

The same is true in the case of the expanding universe. But in that case, there 

is a long-range force between the particles—namely, the force of  gravity—that, 

in contrast with the can of gas molecules, plays a signifi cant role. Because of 

the opposing force of their mutual gravitational pull, as the particles in the 

universe expand, they are also slowed down. We must remember that the num-

ber of possible microstates, that is, the entropy, depends both on the range of 

possible positions and also on the range of possible speeds, or equivalently, 

momenta which the particles can have. The increase in the range of positions 

and the decrease in the range of possible momenta tend to balance one an-

other in their eff ect on the entropy of the expanding universe, so it is no longer 

so obvious that the increasing entropy required by the second law will lead to 

expansion. More sophisticated theoretical analysis—beyond the scope of this 

book—is required. As an observational fact, however, we do see the universe 

is expanding, so that the thermodynamic and cosmological arrows do point in 

the same direction.8

8. For more on the deep questions concerning the relation between the cosmological arrow of 

time and the second law, see Penrose’s Emperor’s New Mind and Road to Reality, and Carroll’s From 

Eternity to Here.
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8
General Relativity

Curved Space and Warped Time

Now I’m free, free-fallin’ . . . 

tom pet t y, “Free Fallin’”

In this chapter, we discuss Einstein’s great-

est achievement—his general theory of 

relativity. The idea of “curved spacetime” embodied in the theory is crucial for 

understanding the scenarios for time machines and warp drives that we will 

discuss in future chapters. We saw earlier that special relativity singles out a 

particular class of reference frames for describing the laws of physics. These 

are the so-called inertial frames. An observer in such a frame cannot tell, from 

measurements made entirely in her own frame, whether her frame is abso-

lutely at rest or moving uniformly. However, the observer can tell whether she 

is accelerating (with respect to an inertial frame). Einstein wondered why there 

should be such a dichotomy. Why should any frame, inertial or accelerating, 

have a privileged status for describing the laws of physics? He was also aware 

of the fact that, while Maxwell’s laws of electricity and magnetism are the same 

in all inertial frames of reference, Newton’s law of gravitation is not.

Gravity versus Electromagnetism

This diff erence can be illustrated in the following way. Suppose you have 

two electric charges some distance apart. Now you suddenly move one of the 

charges a certain distance from its original position and stop it. How long 

does it take for the second charge to know that the other charge has changed 

position? According to the picture of electromagnetism proposed by  Michael 
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 Faraday (still essentially the one used today), the space between the two charges 

is not empty. Each charge produces an electric “fi eld” around itself and can 

also respond to external electric (and magnetic) fi elds. (These are the elec-

tric and magnetic fi elds mentioned on chapter 3 in connection with Maxwell’s 

equations.) The two charges in our example interact by means of their electric 

fi elds. The fi eld is the intermediary that transmits an electric force, a push or 

a pull, from one charge to another. If one charge is suddenly moved to a new 

position, the fi eld around that charge must “readjust” itself around the new 

position of the charge.

So another way of asking our question is, how quickly does the second 

charge “know” about the rearrangement of the fi eld of the fi rst charge? Max-

well’s equations, which are rigorous mathematical laws describing the behav-

ior of classical electric and magnetic fi elds, give an unequivocal answer. When 

the fi rst charge is suddenly moved and then stopped, a “kink” is produced 

in its electric fi eld. This kink propagates from one charge to the other at the 

speed of light in the form of an electromagnetic wave (a wave, as discussed in 

chapter 3, consisting of oscillating electric and magnetic fi elds). These waves 

can propagate because changing electric fi elds produce magnetic fi elds and 

vice versa. Therefore, the amount of time it takes for one charge to know that 

the other has moved is (roughly) the distance between them divided by the 

speed of light. To sum up, Maxwell’s theory is a “fi eld” theory. Charged parti-

cles produce electric and magnetic fi elds in the space around them and interact 

with one another via these fi elds.

Newton’s theory of gravitation is not like this. It’s what is known as an 

“ action-at-a-distance” theory. If we ask the same question for two masses 

in Newton’s theory, we get a very diff erent answer. According to Newton, 

the space between the two (assumed uncharged) masses is empty. If we sud-

denly move one mass, the other mass knows instantaneously that the other has 

moved. As we saw earlier, such instantaneous signaling is incompatible with 

the special theory of relativity, in which the upper speed limit for any signal is 

the speed of light. Einstein was profoundly bothered by this fundamental dif-

ference in character between electromagnetic and gravitational forces, and so 

he set out to construct a fi eld theory of gravitation after the manner of Maxwell. 

Einstein could have chosen to try to resolve the diffi  culties by trying to adjust 

Newton’s theory to be compatible with special relativity; however, he chose a 

radically diff erent path.

There is another important difference between electromagnetism and 

gravity. When an electric or magnetic force acts on an object, the resulting 

 acceleration depends on both the mass and the charge of the object. Objects 
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with diff erent “charge-to-mass ratios” will be accelerated diff erently (this is 

the principle behind a device known as the “mass spectrometer”). For ex-

ample, to test whether there is an electric fi eld in some region of space, we 

could release a number of “test” particles with diff erent charge to mass ratios 

and observe their accelerations. The situation with gravity is quite diff erent. 

All objects are aff ected by gravity in exactly the same way. More precisely, the 

gravitational force accelerates all objects in the same way, regardless of their 

mass or composition. This is a remarkable feature of the gravitational force, 

which distinguishes it from all other known forces. Let us delve into this point 

in a bit more detail.

Mass and the Principle of Equivalence

There are two properties associated with the idea of the “mass” of an object. 

One is the inertial mass, which is a measure of how an object responds to a 

force, that is, a push or a pull. More precisely, the inertial mass is a measure 

of the resistance of an object to a change in its state of motion, that is, its re-

sistance to being accelerated. A Mack truck has a larger inertial mass than a 

Volkswagen, which is why if you push the truck and the Volkswagen with the 

same amount of force, you see more change in the motion of the Volkswagen 

than the Mack truck. Another property is the “gravitational mass” of an object, 

which is a measure of the ability of the object to produce and respond to a 

gravitational force. These two properties are associated with the name “mass” 

but are quite diff erent from each other. Yet, it turns out that these two kinds 

of mass are equal to one another: the inertial mass of an object is equal to its 

gravitational mass. There is no apparent reason why this should be so. (The 

equivalence of the inertial and gravitational mass of an object has also been 

experimentally tested to great accuracy, to about 1 part in 10–12.) As a result, 

when one writes down the expression for the acceleration of an object under 

the infl uence of a gravitational force, the mass of the object cancels out from 

the two sides of the equation, and the resulting expression for acceleration is 

independent of the mass of the object.

Newton’s second law relates the inertial mass m of an object to the ac-

celeration a it experiences due to a net external force F acting on it: F = ma. 

Newton’s law of gravitation states that the gravitational force Fg felt by an

object with mass m due to another mass M is given by: F
g

= − GmM

r2
, where

r is the distance between the masses and G is Newton’s gravitational constant. 

The minus sign in the equation indicates that gravity is always attractive. If 
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the net external force acting on the mass m is Fg, so that F = Fg, then we have

that ma = − . The mass m cancels out from both sides of the equation, 

so then the acceleration due to gravity produced by the mass M is simply given

by a = − . If, for example, M represents the mass of the earth, then this

equation says that the acceleration experienced by an object of mass m, due to 

the earth’s gravity, is independent of m. Hence, all objects undergo the same 

acceleration under gravity. (This was illustrated in Galileo’s famous—although 

probably apocryphal—experiment of dropping two spheres of diff erent mass 

at the same height from the Leaning Tower of Pisa and showing that they hit 

the ground at the same time.) Newton considered this fact a mere coincidence, 

but Einstein argued that the equivalence of inertial and gravitational mass was 

a deep feature of nature, which he elevated to the “principle of equivalence.”

In what he called “the happiest thought of my life,” Einstein realized that a 

man falling off  a roof will not feel his own weight during the fall. (Landing is 

of course another matter!) That led Einstein to conceive another of his famous 

“thought experiments.” Consider a person in a rocket ship out in empty space, 

far away from any gravitating body and with its engines shut off  and no rota-

tion. If the person takes out a pocket watch and releases it, the watch will re-

main in position— the watch, the person, and everything in the spaceship will 

“fl oat” relative to the walls of the ship. Now, Einstein said, consider a person 

in an elevator car near the surface of the earth for which the elevator cable has 

snapped. Such a person will also “fl oat” relative to the walls of the elevator car. 

Moreover, if he takes out a pocket watch and lets it go, it will stay there—it 

will “fl oat” relative to the person and the walls of the car! That’s because the 

watch is falling at the same rate as the person and the elevator car. So, during 

the fall, the person will feel as though gravity has been “turned off .” (This is 

the reason astronauts in the space shuttle are said to experience “weightless-

ness.” They and the space shuttle are both accelerating toward the center of the 

earth with the same acceleration. This is the acceleration due to gravity, which 

is necessary to keep the shuttle moving in a circle rather than going off  in a 

constant direction, that is, along a straight line, as it would do if there were no 

gravitational force pulling inward toward the earth.) Einstein argued that no 

experiment done inside a closed elevator car could determine whether the car 

was in space far from all gravitating bodies or freely falling near the earth’s 

surface (this is illustrated in fi gure 8.1).

Einstein then extended his thought experiment further. Suppose an eleva-

tor car out in empty space is accelerated at a rate of 32 feet per second squared 

GmM

r2

GM

r2
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(this is 1 g, the rate at which objects fall near the surface of Earth). The person 

in the car takes out his pocket watch and releases it. He sees it fall to the fl oor 

of the car at a rate of 32 feet per second squared. As seen from inside the car, 

the watch and all other objects in the car will behave as though the car were 

sitting at rest on the surface of Earth (see fi gure 8.2).

An observer (not shown) standing at rest relative to the earth and watching 

fig. 8.1. Principle of equivalence I. The behavior of 

objects inside a freely falling elevator car is indistin-

guishable from those in an identical elevator car out 

in space, far away from all gravitating bodies.

empty space

surface of

 the earth

free fall

1g
acceleration

empty space

surface of

 the earth

1g
acceleration

fig. 8.2. Principle of equivalence II. Objects inside an el-

evator car accelerating upward at  behave the same way as 

inside a (small) elevator car on the surface of the earth.
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empty space

surface of

the Earth

free fall

light ray light ray

fig. 8.3. Principle of equivalence III. The light ray 

moves in a straight line for both observers.

the situation in the left half of fi gure 8.2 would see the watch momentarily 

fl oating in space and the fl oor of the car accelerating up to meet it. (Note that 

the surface of the earth is drawn as fl at in these fi gures for a reason. More 

about this in a little while.) Einstein’s conclusion was that “locally,” that is, 

within the closed elevator car, an observer could not tell whether the elevator 

car was sitting on the surface of the earth, or out in empty space far away from 

all gravitating bodies and accelerating at a rate of 1g. (Here we assume that 

the car is “small” and falls for a “suitably short” period of time. We will make 

these ideas more precise a little later.)

Gravity and Light

Einstein then considered the behavior of a beam of light inside the elevator 

car in each case. Suppose a tiny horizontally mounted laser attached to the 

wall of the car emits a light beam. We describe the subsequent motion of the 

beam as seen by an observer inside the closed elevator car. On the left of fi gure 8.3, 

the elevator car is unaccelerated in empty space, so the beam simply travels in 

a horizontal line across the car. On the right, the elevator car is freely falling. 

Since an observer inside the car cannot tell whether he is in free fall or drifting 

in space, everything inside the car—including the light beam as well as the 

observer—falls at the same rate. So again the observer will see the light beam 

move across the car in a horizontal line.

On the left of fi gure 8.4 the car is accelerating upward at a rate of 1g. Be-

cause of the upward acceleration of the car, everything inside the car, including 
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the light beam, appears to observers in the car to accelerate downward at a rate 

of 1g. As a result the beam does not travel in a horizontal line relative to the 

car but appears to bend downward, striking the opposite wall at a point below 

the point of impact of the initial horizontal path. Einstein drew a remarkable 

conclusion from this. If in fact, no experiment done from within the car can 

determine whether the car is being accelerated in empty space or sitting at rest 

on the surface of the earth, then in the second case (illustrated in fi gure 8.4) 

the path of a beam of light must also bend in the earth’s gravitational fi eld. 

Gravity “bends” light! One might have guessed this from the fact that light 

is a form of energy, and energy has mass (E = mc2 again), and mass is aff ected 

by gravity. Therefore light should have mass and should be aff ected by gravity 

as well. However, one needs to be a bit careful with this argument, as it is not 

entirely correct as it stands (which we will discuss later).

Since the gravitational force, unlike the electromagnetic force, aff ects all 

objects equally Einstein reasoned that it might therefore be more appropriate 

to describe gravity in terms of the geometry of space and time rather than as 

a separate force acting in space and time. Furthermore, he argued that all ref-

erence frames, both inertial and noninertial, should be on the same footing, 

that is, equally valid for describing the laws of physics. He called this idea the 

“principle of general covariance.”

Tidal Forces

We previously argued that an observer cannot “locally” tell the diff erence be-

tween the eff ects of gravity and acceleration. Since, unlike electromagnetism, 

empty space surface of

 the earth

1g
acceleration

fig. 8.4. Principle of equivalence IV. Both observers 

must see the light ray bend. Hence, the principle of 

equivalence implies that “gravity bends light.”
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gravity accelerates all bodies equally, one could not unambiguously deduce the 

presence of a gravitational fi eld by releasing test masses in a local region of 

space and time. Put another way, the gravitational force can always be “trans-

formed away” by switching to a (small) freely falling frame of reference where 

it feels like gravity has been turned off . Note that we have been careful to repeat 

words like “locally” and “small.” Let’s see what happens if we remove these 

restrictions. In special relativity (i.e., in the absence of gravity) we can make an 

inertial frame of reference as large in both space and time as we like. What if we 

try to do the same thing near a massive body like the earth? In fi gures 8.1–8.4, 

the surface of the earth has been drawn as a horizontal line. That’s because we 

were implicitly assuming that the size of our elevator car was small compared 

to the radius of the earth. Let’s see what happens if we make the car bigger.

First let us point out that an object in free fall near the earth is falling to-

ward the center of the earth’s gravitational attraction, which is the center of the 

earth. If the object is small, compared to the radius of curvature of the earth, 

and falls for only a short time, then the diff erence in gravitational force acting 

on diff erent parts of the object is slight and can be considered negligible. In 

fi gure 8.5, we see a very long, horizontally oriented elevator car that is freely 

falling near the surface of the earth. Two ball bearings start out at each end of 

the car. Since the car is freely falling, so are the balls, and each ball is falling 

fig. 8.5. Tidal eff ects I. An observer inside a long, horizontal, 

freely falling elevator car will see the two ball bearings move to-

ward one another.
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toward the center of the earth. However, because of the earth’s curvature, the 

paths of the balls are not parallel to one another. Therefore, a part of the balls’ 

motion will be along the horizontal direction. This will have the eff ect of push-

ing the balls closer and closer together as the elevator car falls. (Notice that 

this eff ect gets smaller as you decrease the horizontal dimension of the car. 

When the car is very small, compared to the radius of the earth, the paths of the 

balls are nearly parallel and their horizontal motion is negligible.)

In fi gure 8.6, we see a long elevator car dropped along its vertical axis. Near 

the center of the car are two balls connected by a vertical spring. As the car 

falls, so do the balls, but the lower ball falls at a slightly faster rate than the 

upper ball. This is because it is slightly closer to the center of the earth than 

the upper ball and therefore experiences a slightly stronger gravitational force. 

(According to Newton’s law of gravitation, the gravitational force is propor-

tional to one over the square of the distance from the center of gravitational

attraction. So if you are twice as far away, the force is
 

1
22  =

 
1
4

 as strong, i.e., it

decreases by a factor of 4. If you are twice as close, i.e., half as far away, the

force changes by a factor of 
1

1

22

⎛
⎝⎜

⎞
⎠⎟

 = 4 and is 4 times stronger.)

fig. 8.6. Tidal eff ects II. An observer inside a long, 

vertical, freely falling elevator car will see the two ball 

bearings move away from one another, resulting in a 

stretching of the spring connecting them.
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Since the upper ball is accelerated at a slightly slower rate than the lower 

ball, the net eff ect is that as time progresses the spring connecting the two 

balls will stretch. If the time of fall is short enough, this stretching will not be 

noticeable.

Let us put these eff ects together and consider the free fall of an initially 

spherical object. We deduce that the diff erence in gravitational force over dif-

ferent parts of the object will tend to gradually distort the sphere into an ellip-

soid as it falls. These diff erences in gravitational force are called “tidal forces.” 

(They are the same forces responsible for causing the tides in the earth’s 

oceans. The tides arise from the diff erence in gravitational pull across diff er-

ent parts of the earth exerted by both the moon and the sun.)

The eff ect is most noticeable for the oceans, since they are the easiest to 

move around, but the earth’s crust “fl exes” a bit as well. (On Jupiter’s moon 

Io, this “tidal fl exing” is so great that it keeps the interior of Io hot enough to 

cause the volcanic eruptions of molten sulfur, which were fi rst observed on 

the Voyager fl ybys.) So the lesson we have learned is that while locally (i.e., in a 

small-enough region of space and time) the gravitational force can be trans-

formed away by going to a freely falling frame of reference, that frame can-

not in general be arbitrarily extended in space or time. Put another way, the 

gravitational force at a point does not have absolute meaning, but variations 

in gravitational force are detectable. Hence, in the presence of a “true” gravi-

tational fi eld, inertial frames can only be “local inertial,” that is, freely falling, 

frames of reference.

To see this, imagine taking the diff erent possible freely falling frames near 

the earth and trying to “knit” them together into one single, globally inertial 

frame. First consider the (artifi cial) example of a uniform gravitational fi eld. 

Imagine lots of freely falling elevator cars, representing local inertial frames, 

located at diff erent points in space. In a uniform gravitational fi eld, all the el-

evator cars will fall at the same rate, hence, they could be knitted together to 

form one large elevator car—as large as we like (a “global inertial frame”), 

which falls at the same rate as the individual cars.

However, real gravitational fi elds are not uniform. They are only approxi-

mately uniform over regions of space and time that are small enough for tidal 

eff ects to be negligible over the time of the experiment we happen to be doing. 

But globally they are not uniform, because the gravitational fi eld of a massive 

object varies in strength and direction at diff erent distances from the object. 

Now imagine a series of tiny elevator cars distributed around the earth at dif-

ferent distances from the center. Each small elevator car represents a local in-
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ertial frame, but since the strength and direction of the gravitational force vary 

at each point, each car experiences a diff erent gravitational force. Therefore, 

in this case we cannot knit them together to form one single large (“global”) 

inertial frame that falls at the same rate as the individual frames.

Gravity and Time

In chapter 3 we talked about the problem of synchronizing two clocks at diff er-

ent locations. We more or less took it for granted that once the clocks were syn-

chronized, they would continue to agree, running at the same rate. Of course, 

that’s not necessarily true in practice, but at least in principle, one can imag-

ine making it true by using two identically constructed clocks, or better yet, 

two atomic clocks making use of radiation from the same kind of atom. While 

that’s true for clocks at rest in an inertial frame, it is not true, as we are about 

to see, for clocks at rest in a noninertial (i.e., accelerating) reference frame, or, 

because of the principle of equivalence, for clocks in a gravitational fi eld.

The principle of equivalence can be used to deduce the fact that gravity af-

fects the rate of a clock. Consider two observers, Allen and Tom, stationed at 

the bottom and top, respectively, of a closed elevator car that is accelerating 

upward at a constant rate of 1g in empty space.1 The distance between Allen 

at the bottom and Tom at the top is h. Let’s assume that Allen has a clock pro-

grammed to emit light pulses at regular intervals, given by Tallen. Tom receives 

the signals at an interval given on his own identical clock by Ttom.

First let’s consider the case when the elevator car is moving inertially, that 

is, at a constant velocity v with respect to an external inertial frame. By the 

principle of relativity, Allen and Tom could just as well assume that they were 

at rest, and so the time interval between pulses as measured by Tom’s clock 

would simply be Ttom = Tallen; Tom’s clock would receive the pulses at exactly the 

same rate as Allen’s clock emits them.

Let us look at this same situation as seen by an observer in an inertial frame 

external to the elevator car. The pulses travel at a speed c relative to the inertial 

observer, as required by the fi rst principle of relativity. This observer will see 

Tom’s clock “running away” from the light pulse at speed v, and hence, the 

external observer will see the light pulses moving at speed c – v  relative to the car. 

1. We will assume that the velocity of the car during the time of our experiment is always very 

small, compared to the speed of light, so that we may ignore the eff ects of special relativity. So for 

the current argument, Newtonian physics will suffi  ce.
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(As discussed previously, relativity only requires that an inertial observer see 

light moving at speed c relative to herself. She may see a light pulse moving at a 

speed c – v relative to some other object that is also in motion relative to her.) 

Each of the pulses will thus take a time h / (c – v) to reach Tom at the top of the 

car. Since v is constant, the travel time for every pulse is the same, and Tom will 

thus see the interval between the arrival time of Allen’s pulses to be the same as 

that between their emission. Again, we conclude that Ttom = Tallen.

Now let’s imagine that the elevator car is accelerating at a constant rate of 

1g. Look at the situation from the external inertial observer’s point of view. 

The situation will be the same as before, except that the average value of v 

during the fl ight time of a light pulse is now slightly larger for each successive 

light pulse, and thus the average value of c – v is slightly less because of the 

acceleration. The top of the elevator is running away from the light pulses at 

a faster and faster rate, and thus, the travel time for each successive pulse will 

be greater than that for the one before by an amount which we might call Tdif. 

Suppose, as before, that Allen’s clock emits light pulses at intervals of Tallen, as 

measured on his clock. Now the diff erence in arrival time of successive pulses 

at Tom’s clock will be Tallen + Tdif  = Ttom. Therefore the time interval between the 

pulses according to Tom’s clock will be greater than that measured by Allen’s 

clock, that is, Ttom > Tallen. Hence, Allen’s clock is running slow, compared to 

Tom’s clock, since Tom’s clock registers a greater interval of elapsed time than 

Allen’s clock.

By the principle of equivalence, the situation we have just described is iden-

tical to the case of the same elevator car sitting at rest on the surface of the 

earth (as far as Allen and Tom are concerned). Therefore, Allen’s clock will run 

slower than Tom’s clock in this case, as well. Gravity “slows down” time! Here 

we assume that the car is small enough that tidal eff ects are negligible, that is, 

we assume a uniform gravitational fi eld, but the eff ect exists for nonuniform 

gravitational fi elds as well.

At this point you might be wondering, “Well, if this is true, how come I 

don’t have to reset my watch after visiting the Empire State Building?” The 

answer, of course, is that the eff ect is extremely tiny over height diff erences 

near the surface of the earth, because earth’s gravitational fi eld is extremely 

weak. “Extremely weak? Oh yeah? Then how come we don’t go fl ying off  it?” 

Well think about it this way: the gravitational pull of the entire Earth on a paper 

clip can be countered by the pull of a dollar-store magnet (whew, almost dated 

ourselves and said “dime-store”).

Einstein’s journey from principle of equivalence thought experiments to the 
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fi nal fi eld equations of general relativity was long and arduous. We will not 

recount that here, since there are many detailed treatments of the subject, but 

we will summarize the results of the journey and their implications for us.

General Relativity

Einstein’s crown jewel is the general theory of relativity, his theory of gravity. 

He discovered that what we perceive as gravity can be described as a “curva-

ture” or “warping” of the geometry of spacetime. In the absence of gravity, 

spacetime is fl at and particles and light rays move in straight lines. When grav-

ity is present, particles and light rays move along the closest analogs to straight 

lines, known as “geodesics.” These are the straightest possible lines one can 

have when spacetime is curved. (For example, on the curved spherical surface 

of the earth, the geodesics are portions of “great circles.” These are circles, 

such as the equator, which lie in a plane containing the center of the earth. 

The shortest distance between any two points on the earth’s surface is along 

the great circle joining them.)

A simple two-dimensional example is instructive. Consider a rubber sheet 

stretched out fl at. Roll a marble along the sheet. It moves on a straight line. 

However, if a bowling ball is placed in the middle of the rubber sheet, the sheet 

is no longer fl at, at least in the region near the bowling ball. A marble roll-

ing along this sheet toward the bowling ball will move along a curved path, 

following along the “straightest” path it can in a geometry that is no longer 

fl at. The bowling ball determines the geometry of the rubber sheet, which in 

turn determines the allowed paths of marbles rolling on the sheet. The two-

 dimensional rubber sheet represents three-dimensional space, with one di-

mension suppressed. Think of it as a “snapshot” of space at one instant in 

time. The warping of the sheet in the presence of the bowling ball illustrates 

the curvature of space in the vicinity of a massive body, such as a star (see fi g-

ure 8.7). The darker region at the bottom represents the matter of a star, while 

the light gray region represents the curved empty space outside the star (there 

is a warping of time as well, but that is not represented in these examples). The 

third dimension helps us visualize the curvature of the two-dimensional space 

but it is not part of that space. Similarly, to visualize the curvature of three-

 dimensional space, we would need a four-dimensional space from which to 

view it. Since most of us have trouble visualizing things in higher dimensions, 

the two-dimensional rubber sheet pictures are a useful intuitive crutch, as long 

as we don’t push them too far.
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In Einstein’s general theory of relativity, the presence of matter or energy 

distorts the geometrical structure of spacetime, much as the bowling ball 

distorts the rubber sheet. Particles and light rays moving in curved spacet-

ime follow geodesics, the straightest possible paths available to them, just 

as the marble moves along the straightest path it can on the curved rubber 

sheet. Newton would say that the earth is held in orbit due to a gravitational 

“force” of attraction exerted by the sun on the earth. Einstein would say that 

the mass of the sun curves the spacetime in its vicinity and the planets move 

along the straightest possible paths in this curved spacetime. The late physi-

cist John Wheeler summarized this by the dictum that “spacetime tells mat-

ter how to move; matter tells spacetime how to curve.” So gravity is reduced 

to  geometry—a simple and beautiful insight. Einstein’s “fi eld” equations are 

mathematically very  complex. However, their physical content can be (very) 

loosely expressed as

“geometry” = “matter and energy.”

At this stage it is important to mention several caveats. Our “cartoon equation” 

above is highly simplifi ed and does not give the full content of the Einstein 

equations. First of all, stresses and pressures in the matter, as well as matter 

fl ows, also contribute to the right-hand side. Second, only a part of the curva-

ture of spacetime is contained in the left-hand side. There are solutions of Ein-

fig. 8.7. Curved space—a “snapshot picture” of space at one 

instant of time. The fi gure depicts the curved space around a 

massive spherical body, such as a star. Three-dimensional space 

is represented here as a two-dimensional rubber sheet. Each of 

the circles on the sheet represents a sphere in three-dimensional 

space. The space surrounding the sheet has no physical mean-

ing; it simply allows us to visualize the curvature. The warpage 

of time is not shown in this fi gure.
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stein’s fi eld equations of gravitation which are “vacuum solutions,” represent-

ing the warping of empty space. One example is a gravitational wave, which 

is a ripple of curvature in spacetime that moves through space at the speed of 

light.2 Another is the curvature of the region of empty space outside a massive 

body, such as a star. The fi rst solution of Einstein’s equations to be discovered 

was of just this type. The solution discovered in 1916 by Karl Schwarzschild, 

aptly called the Schwarzschild solution, describes the curvature of spacetime 

outside of a spherically symmetric body, again like a star. It covers only the 

region of empty space outside the star. The spacetime curvature inside the star 

itself will depend on the star’s interior structure. Finally, we should note that 

the fi eld equations themselves are not “derived” any more than are Newton’s 

laws. They are postulates about the way nature behaves—postulates that ulti-

mately must be verifi ed by experiment and observation.

The Three “Classical” Tests of General Relativity

Einstein himself suggested three ways that the theory might be tested. These are 

now referred to as the three “classical” tests of general relativity, although there 

have been numerous others since then. One was the successful explanation of 

an anomaly in Mercury’s orbit, called the “precession of the  perihelion”—an 

eff ect that had been known since the nineteenth century, but that, hitherto, 

had not been satisfactorily explained. The perihelion is the point in a planet’s 

orbit when it comes nearest the sun. Mercury’s orbit is known to be somewhat 

odd in that its perihelion would slowly shift, or “precess.” Most of this shift 

can be attributed to the gravitational tugs on Mercury from the other planets, 

notably Jupiter. But when these eff ects are taken into account, there is still a 

small amount of perihelion shift that was unexplained by Newton’s theory of 

gravity. Einstein calculated Mercury’s orbit in the curved spacetime around the 

sun, using his fi eld equations of general relativity, and found that the remain-

ing shift was automatically accounted for in his theory.

A second was the prediction of the “gravitational redshift” of light escaping 

from a massive body. A ray of light “fi ghting against” the gravitational pull of 

a massive body loses some energy, which corresponds to a decrease in the fre-

quency of the light. (The frequency of light, or of a more familiar water wave, 

is the number of wave crests that pass an observer’s position every second.) 

2. Just as electromagnetic waves are produced when charges accelerate, gravitational waves are 

produced by accelerating masses.
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When visible light decreases in frequency it gets redder in color, hence the 

name gravitational redshift. This eff ect is related to the slowdown of clocks by 

gravity, which we discussed earlier: a clock that is closer to a massive body 

ticks more slowly than a clock which is farther away.

The period of a light wave is the distance between two successive wave 

crests (the “wavelength”) divided by the speed of light. If the frequency is the 

number of wave crests passing per second, then the period is equal to 1 / fre-

quency, that is, the time interval between successive wave crest arrivals (e.g., 

if the frequency is a hundred million vibrations per second, then the period is 

1 / [100 million] seconds, or ten billionths of a second). We can regard the pe-

riod of a light wave as the tick of a clock. Atomic clocks are extremely sensitive 

and can measure time intervals with a precision down to billionths of a second. 

The ticking rates of two such clocks can be compared to a high degree of ac-

curacy using a technique in atomic physics known as the Mossbauer eff ect. 

In the 1960s, R. V. Pound and G. A. Rebka compared the ticking rates of two 

identical atomic clocks, one on the roof of a building, the other in the base-

ment. According to general relativity, the clock in the basement should tick a 

few billionths of a second slower than the clock on the roof. Pound and Rebka 

measured this eff ect, which agreed quantitatively with Einstein’s prediction.

The third of the eff ects predicted by general relativity is the bending of 

light by the sun. A ray of light from a distant star that just grazes the edge of 

the sun will be defl ected by a small angle. Normally the image of such a star 

would be totally obscured by the much-brighter surface of the sun (the photo-

sphere). However, during a total solar eclipse, the moon passes between the 

earth and the sun and the shadow of the moon covers up the photosphere, 

albeit very briefl y. During this short period of time, stars near the edge of the 

sun would be visible. Einstein suggested that photographs of stars near the 

sun be taken during a total solar eclipse. These could then be compared with 

photographs taken of the same stars when the earth is in another part of its 

orbit, that is, when an observer on earth can see these stars directly without 

the sun in the way. An overlap of the photographs should show a shift of the 

stars’ positions.

This is somewhat diffi  cult to do, as the predicted eff ect is very tiny because 

the sun’s gravitational field, even near its surface, is relatively weak. The 

amount of shift is an angle of about 1.7", that is, 1.7 “seconds of arc.” One sec-

ond of arc is about the angular (apparent) size of a tennis ball held at a distance 

of 8 miles away! Another practical problem is that total solar eclipses tend to 

be visible in rather inconvenient places, like deserts. During the eclipse, the 
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surrounding air temperature drops, which can cause contraction of telescope 

equipment, which can also muck up the observation of the eff ect. There were a 

number of eclipse expeditions that failed for various reasons. Finally in 1919, 

the eff ect was observed by one of the most famous astronomers of the day, Sir 

Arthur Stanley Eddington, and his measurements agreed with Einstein’s pre-

diction. (In actuality, there were fairly large errors in these early experiments, 

which were later corrected by better equipment and techniques. However, the 

eff ect has since been measured numerous times, and the results agree with 

Einstein’s prediction.)

Before he had the full fi eld equations of general relativity, Einstein calcu-

lated the bending of light using a principle of equivalence argument similar to 

what we discussed earlier, in relation to fi gure 8.4. It’s just as well that previ-

ous eclipse expeditions were foiled for one reason or another, since Einstein’s 

earlier prediction of the light defl ection was off  by a factor of 2. It turns out 

that the other part of the eff ect comes from the contribution due to the warp-

age of time in the sun’s gravitational fi eld. Had the earlier eclipse expeditions 

succeeded, it could have been an embarrassment for Einstein. Sometimes it 

pays to be in the wrong place at the right time! Eddington’s announcement 

of his eclipse results made Einstein a worldwide celebrity overnight, a state of 

aff airs Einstein never understood. Once, Charlie Chaplin invited Einstein to a 

screening of his movie City Lights. The huge crowds that turned out were there 

to see Einstein as much as Chaplin. Einstein supposedly turned to Chaplin 

and asked, “What does all this [public adulation] mean?” The more worldly 

Chaplin replied, “Nothing.”

All of these eff ects we’ve discussed are tiny within our solar system. How-

ever, there are objects in the universe whose gravitational fi elds are so strong 

that these eff ects are enormously magnifi ed. One such object is the remnant 

that is left when a star like our sun dies. It is called a “white dwarf ”—an object 

with the mass of the sun compressed into a volume the size of the earth, and its 

density (mass / unit volume) can be hundreds of thousands to millions of times 

the density of water. A cupful of white dwarf material would outweigh a dozen 

elephants. Another related object represents the fate of stars whose masses 

are much greater than that of the sun. Such a star starts off  with a much bigger 

mass, but in its death throes, the core of the star can collapse rapidly under its 

own weight while the rest of the mass of the star is blown into space. The result 

is one of the most violent events known in nature—a “supernova” explosion, 

in which a single star can briefl y outshine an entire galaxy of billions of stars. 

If the fi nal mass of the collapsed core is between two and three times the mass 
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of our sun, the object becomes a neutron star. This is a star made of neutrons, 

compressed into the size of a city like Manhattan. Its density is comparable to 

that of matter in an atomic nucleus, so dense that a clump of neutron star ma-

terial the size of a sugar cube would weigh more than the entire human race! 

If you could stand on the surface of a neutron star (not recommended!), you 

could see the back of your head. This is because the bending of light eff ect is 

so large near the star’s surface that a light ray from the back of your head could 

be bent in a circle around the neutron star to reach your eye from the opposite 

direction. Thousands of white dwarfs and neutron stars have been discovered, 

in our galaxy and in others.

The strangest object of all is the result of the death of a star whose fi nal 

mass is more than three times the mass of the sun. General relativity tells us 

that no force can hold the star up against its own gravitational pull, and it must 

collapse into a “black hole.” What this means is that the star collapses to the 

point where a ray of light emitted from the surface of the star gets immediately 

dragged back in. The star becomes shrouded by an “event horizon.” Just as a 

ship on earth that passes below the horizon cannot be seen, the region inside 

of the event horizon is cut off  from the outside universe. This is because inside 

the horizon, an object or light ray would need to travel at a speed greater than 

c to escape to the exterior universe.

All the eff ects of general relativity that we discussed earlier are greatly mag-

nifi ed near a black hole. In addition to the bending of light, the gravitational 

time dilation eff ect is one of the most dramatic. Again consider the two ob-

servers, Allen and Tom. Tom is stationed on the surface of a star which is 

about to collapse to a black hole—ready to take the ultimate fall for all man-

kind. Allen, more sensibly, fl oats in a rocket ship very far away from the star, 

to watch the action at a safe distance. Tom and Allen synchronize their clocks 

before the collapse, and Tom agrees to send laser signals to Allen at a rate of 

once a second, as measured by Tom’s clock. The collapse begins. As the star 

moves inward, Allen begins to notice that each successive signal from Tom 

takes longer and longer to arrive and is progressively redder in color (gravita-

tional redshift eff ect). Moreover, Tom’s clock is running slower and slower as 

measured by Allen’s clock (gravitational time dilation). By Allen’s clock, Tom 

and the surface of the star take an infi nite amount of time to reach and fall past 

the event horizon. By contrast, it takes a fi nite amount of time, as measured by 

Tom’s clock, to cross the event horizon and reach the center. This is warping 

of time with a vengeance! This scenario might lead one to believe that what 

Allen will actually see visually is Tom and the star moving slowly and yet more 
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slowly, fi nally freezing at the event horizon after an infi nite amount of time. 

This is not the case; it is also a point that, rather annoyingly, most science fi c-

tion writers get wrong. Due to the escalating redshift, the light from both the 

star and Tom’s laser will rapidly get shifted out of the range of visible light, to 

progressively longer and longer wavelengths, and quickly become undetect-

able. So what Allen will actually see is the star and Tom go dark and “wink 

out,” leaving a central region of blackness, after a very short time. As an ex-

ample, for a star with a mass of 10 times the sun’s mass (10 “solar masses”), 

Allen would see Tom and the star disappear after only about a thousandth of 

a second after the onset of collapse. After collapse, the size of the resulting 

black hole— the size of the event horizon—is given by the “Schwarzschild 

radius”:

R
s

= 2GM

c2
,

where M is the mass of the collapsed object, G is Newton’s gravitational con-

stant, and c is the speed of light. For a 10 solar mass star, Rs is about 20 miles. 

Anything that falls through the Schwarzschild radius is forever cut off  from 

the outside universe. Numerous objects believed to be stellar mass black holes 

have been discovered.

Let us now consider the fate of an observer who falls into an already-formed 

black hole, in light of our earlier discussion of tidal forces; refer to fi gures 8.5 

and 8.6 (for those of you who remember the original Saturday Night Live! 

program, this scenario might be entitled, “Mr. Bill Takes a Trip to the Black 

Hole”). When the observer is far away from the black hole, he simply feels a 

rather comfortable free fall. However, as he gets closer to the black hole he be-

gins to feel a stretching force between his feet and his head, and a compression 

force that squeezes him horizontally. These tidal forces, which we discussed 

earlier, are the result of the diff erences in gravitational force between his head 

and feet, and between the two sides of his body. On a weakly gravitating body 

like the earth, these diff erences are miniscule, which is why we don’t notice 

them in everyday life. But near a compressed object, such as a neutron star 

or a black hole, the diff erences in gravitational pull even across the size of 

a human body can become enormous. Finally these forces will be enough to 

literally tear a human body limb from limb (a process we technical types refer 

to as “spaghettifi cation”).

For a black hole which formed from a stellar collapse, these forces would 

be strong enough to kill a human being before reaching the horizon. After 
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passing through the horizon, even the (now very deceased) observer’s atoms 

will eventually be torn apart and encounter infi nite tidal forces at the center 

of the black hole. However, the location of this “kill-zone” for a human be-

ing depends on the mass of the black hole. The tidal forces are proportional

to 
1

M3
, where M is the mass of the black hole. So, somewhat nonintuitively,

the tidal forces near and just inside the horizon are smaller for larger black 

holes. An observer falling into a hole of several billion solar masses formed, 

say, by the collapse of a galaxy of billions of stars, could in principle survive the 

plunge through the horizon and live for a time inside the black hole. (There is 

extremely good evidence that such so-called supermassive black holes, with 

masses of millions or billions of solar masses, lurk in the centers of many, if 

not all, galaxies, including our own Milky Way.)

Another useful way of representing curved spacetimes is to use light cone 

diagrams. We can depict fl at spacetime by drawing a set of light cones, such 

that all have their axes parallel to one another and are all the same size (to get 

the idea, take a piece of paper, roll it up into a cone, and look down the axis 

of the cone from the top to see the tip at the center). If you imagine looking 

down from the top of the cones, you would see that all of the cones are circular 

and that the tips of the cones lie at the centers of the circles. By contrast, one 

way to represent, for example, the curved spacetime around a black hole, is 

to draw the light cones in a distorted way compared to their fl at spacetime 

representation.

In fi gure 8.8, we show the light cones near a black hole. Far from the hole, 

the light cones on the left look pretty much like their fl at spacetime coun-

terparts. As we get closer to the Schwarzschild radius, we see that the cones 

gradually begin to tip inward. (Here, r represents the radial coordinate.) Right 

at the Schwarzschild radius, we see that the outgoing leg of the light cone (i.e., 

the one pointing away from the black hole) is vertical in the diagram. This 

indicates that a ray of light emitted right at the horizon would take an infi nite

amount of time to escape. Inside the horizon, for r < 2GM

c2
, both the ingoing

and outgoing parts of the light cone point inward, toward the center. Since any 

observer’s worldline must always lie inside the local light cone, this implies 

that, once inside the horizon, all observers must inevitably fall toward smaller 

values of r.

Figure 8.9 illustrates the orientation of the light cones during diff erent 

phases of the collapse of a star to a black hole. The vertical dotted lines repre-
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sent the event horizon; horizontal circles inside these lines represent what are 

called “trapped surfaces,” essentially, regions where light and everything else 

must unavoidably fall toward the center. The vertical squiggly line at the top of 

the fi gure represents the singularity at the center of the black hole, where all 

matter gets crushed to infi nite density and the curvature of spacetime becomes 

infi nite. At the singularity, all known laws of physics break down, to be one day 

ultimately replaced by the yet unknown laws of “quantum gravity.” This would 

be a theory which merges the laws of the very small (quantum mechanics) with 

the laws governing the very large (general relativity). We expect that both of 

these sets of laws must be involved whenever matter is compressed into very 

tiny volumes and gravitational fi elds are enormously strong. Although there 

has been much progress toward a quantum theory of gravity in recent years, it 

is fair to say that we do not yet have a defi nitive theory.

A black hole can, in principle, be used as a time machine. If we could hover 

in a rocket ship near a black hole (with our rocket engines turned on so that we 

don’t fall in), our clocks will tick more slowly, relative to the clocks of observ-

side view

top view

r > 2 G M
c2

r = 2 G M
c2

r < 2 G M
c2

horizon singularity

horizon

fig. 8.8. Light cones in the vicinity of a black hole. At the horizon, the 

outgoing leg of the light cone is “parallel” to the horizon. Inside the 

black hole, all the light cones point inward toward the singularity.
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ers who are far from the black hole. So we could imagine a journey where we 

travel to a black hole, hover just outside the horizon for some period of time, 

and return. Since our clocks when we were near the hole ran slow compared 

to faraway clocks, we will have aged less than our counterparts who did not 

make the journey. The time diff erence will depend on our distance to the ho-

rizon during the hovering phase and how long we stayed there. As you might 

suspect, in practice, this scenario is not very feasible. To get an appreciable 

time diff erence we would have to hover fairly close to the horizon, and the ac-

celeration required to hold us there would be far more than a human being (or 

most materials) could endure.

However, one does not necessarily have to accelerate to use the black hole as 

a forward time machine. Instead, one could go into a circular orbit (i.e., freely 

falling) around the hole. Unfortunately, there is an innermost stable circular 

orbit around a black hole that is at a distance of 3 horizon radii, that is, 6GM / c2. 

fig. 8.9. Light cones during the various stages of 

gravitational collapse.
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(Here, we are assuming a static, noncharged, nonrotating black hole.) The sig-

nifi cance of this orbit is that, inside it, a freely falling particle will either spiral 

into the black hole or be fl ung back out to large distances. Using the geodesic 

equations for a material particle orbiting the black hole at this closest stable 

orbit radius, one fi nds that the time dilation factor is (only) 2  ≈ 1.41. That is, 

clocks on the orbiting spacecraft will tick about 1.41 times slower than identi-

cal clocks on a distant space station far from the black hole. For each year that 

passes on the space station, only about 0.7 years would pass on the spaceship, 

a relatively small but noticeable diff erence. To achieve a larger time dilation 

factor, one would have to travel within the critical orbit and undergo large ac-

celerations by using one’s rocket engines to avoid falling into the black hole.
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9
Wormholes and Warp Bubbles

Beating the Light Barrier 
and Possible Time Machines

But why drives on that ship so fast

Withouten or wave or wind?

The air is cut away before,

And closes from behind.

samuel taylor coleridge, 

The Rime of the Ancient Mariner

To look back to antiquity is one thing, 

to go back to it is another.

charles caleb colton

Wormholes

In this chapter, we will examine ways of 

“cheating” the maximum speed limit im-

posed by the speed of light when spacetime is curved in unusual ways. One 

example of curved empty space, discussed in the last chapter, is the spacetime 

outside of a spherical star. Another such example is a “wormhole.” Here is a 

two-dimensional analog: Take a sheet of paper and cut two identical holes out 

of it. Now fold the paper over on itself, lining up the two holes one over the 

other. Separate the two holes above one another slightly and imagine them 

connected by a smooth tube. Label the holes by A and B. Label a certain point 

near the outside of hole A by a and a similar point near the outside of the other 

hole by b. An ant crawling on the paper could get from point a to point b in two 
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ways. If he is not a very smart ant, he can go the long way around, following the 

bend of the paper from a to b. If he is a savvy ant, he can take the shortcut by 

crawling through hole A, down the tube which connects the two holes, and out 

the second hole to point b. In three dimensions, the two circular holes would 

appear as two spheres. If you step through one sphere, outside observers will 

see you shortly emerge from the other sphere. If one traveled from one sphere 

to the other through normal space, that is, without entering either sphere, the 

distance could be much, much larger. Each sphere is called a “mouth” of the 

wormhole. The narrowest part of the “tube” connecting the two mouths is 

called the “throat.” The two-dimensional analog of a wormhole, in terms of a 

“rubber sheet” diagram, is shown in fi gure 9.1.

The shortcut through space provided by a wormhole is, eff ectively, a means 

of faster-than-light travel. Imagine the wormhole connecting the earth to a star 

10 light-years away. A beam of light, traveling in the space outside the worm-

hole, would require 10 years to make the trip from the earth to the star. (Imag-

ine the upper and lower rubber sheets connected by a strip so that they are both 

parts of the same sheet.) By contrast, an observer could make the trip in a much 

shorter time by traveling through the wormhole. This would appear to violate 

the special relativistic speed limit, which prohibits exceeding the velocity of 

light. A person going through the wormhole could arrive at the star before a 

light beam traveling the outside route. However, the person can never arrive 

fig. 9.1. A wormhole. Light rays converge on entering the top mouth and 

diverge on leaving the bottom mouth.

A

B

negative energy region
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at the star before a light beam taking the same route, that is, through the worm-

hole. When spacetime is curved, the special relativistic speed limit means that 

you cannot exceed the speed of light relative to your immediate surroundings.

The idea of wormholes, though in a somewhat diff erent form than we will 

be talking about, goes back to Einstein and Nathan Rosen in 1935. The concept 

came up again in the 1960s with the work of Martin Kruskal and that of Robert 

Fuller and John Wheeler, all at Princeton University. Unfortunately, as Fuller 

and Wheeler realized, this type of wormhole is unstable—the throat collapses 

in on itself so rapidly that even a beam of light does not have time to travel 

through it. Light or anything else falling into such a wormhole gets caught in 

the “pinch-off ” of the throat, where the curvature of space becomes infi nite. 

If that was not bad enough, this kind of wormhole is like a black hole. It has 

an “event horizon.” This means that it would take an infi nite amount of time, 

as measured by outside observers, for you to fall into the wormhole. And once 

inside, you could never escape. Such a wormhole is “nontraversable”—not a 

very promising possibility for playing interstellar hopscotch.

For these and other reasons, most physicists did not take wormholes very 

seriously as objects that might exist in the real world—or that would be very 

useful even if they did.

As described in the last chapter of Kip Thorne’s excellent book Black Holes and 

Time Warps (1994), the situation changed dramatically in the late 1980s when 

Thorne, who works at Caltech, received a call from his friend, the astronomer 

Carl Sagan. Sagan was writing his novel Contact, later made into a movie with 

Jodie Foster, and he wanted a believable way for his characters to travel across 

the galaxy using some kind of spacetime shortcut. In the novel, he initially used 

a black hole–type wormhole for this purpose, but Thorne pointed out that this 

would not do, because such a wormhole has the undesirable features we dis-

cussed in the previous paragraph. This got Thorne to thinking about exactly 

what would be required to make a “traversable” wormhole, that is, one with 

no horizons and no pinch-off  of the throat, and with properties which would 

enable human beings to travel comfortably around the universe. Thorne knew 

that the usual type of wormhole would collapse, but it was a vacuum solution, 

that is, consisting of only curved empty space with no matter or energy. What 

if you “threaded” the wormhole with some kind of matter or energy? Would it 

then be possible to get a wormhole with all the nice properties we discussed?

The way one usually goes about solving Einstein’s equations is to assume 

the presence of a “physically reasonable” distribution of matter or energy, such 

as a spherical star or a collection of electromagnetic fi elds or particles, on the 
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right side of Einstein’s equations. You then solve (i.e., integrate, for the benefi t 

of those who know some math) Einstein’s fi eld equations to fi nd the spacet-

ime geometry produced by that distribution of matter. This is in general a very 

diffi  cult task, except for cases of high symmetry, such as the case of an exactly 

spherical object. Thorne and his graduate student, Mike Morris, took the op-

posite approach, which one might call “geometry fi rst, matter-energy second.” 

They constructed a wormhole geometry that would be suitable for interstellar 

travel with: no horizons, no infi nite curvature, reasonable traversal times, and 

comfort for human travelers—a “traversable wormhole.” Morris and Thorne 

then put this geometry into the Einstein fi eld equations to fi nd the matter and 

energy distribution that would give rise to this geometry. This is much easier 

than the usual approach.

However, there is no guarantee that the matter-energy obtained by this 

method makes physical sense. If this was all there was to it, Einstein’s equa-

tions would have no predictive power at all. In fact, one can write down any 

spacetime geometry, “plug it in” to the left side of the Einstein equations, 

and fi nd the corresponding mass-energy distribution on the right side of the 

equations, which generates that geometry. Any solution of Einstein’s equa-

tions corresponds to some distribution of matter-energy. With no restrictions, 

one can get any geometry one likes by assembling the appropriate distribution 

of matter and energy. We refer to these geometries as “designer spacetimes.” 

However, deciding what constitutes “physically reasonable” matter-energy is 

not so easy. Einstein’s equations by themselves don’t tell you this. You have to 

make some additional assumptions, known as “energy conditions.”

The weakest of these assumptions is called, appropriately, the “weak energy 

condition.” Loosely, it says that the density (mass per unit volume) of mat-

ter or energy can never be negative, as seen by any observer. Here, “negative” 

means less than the mass or energy density of empty space. This condition is 

obeyed by all observed forms of matter and energy in classical physics, that 

is, when eff ects due to quantum mechanics are neglected. Energy conditions 

tell us what are “physically reasonable” distributions of matter-energy. These 

distributions, in turn, produce what we would then consider to be physically 

reasonable spacetime geometries. However, the energy conditions themselves 

are not derivable from general relativity.

Perhaps Einstein was aware of this when he said of his theory:

But it [general relativity] is similar to a building, one wing of which is made of 

fi ne marble [left part of the equation], but the other wing of which is built of low 
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grade wood [right side of the equation]. The phenomenological representation 

of matter is, in fact, only a crude substitute for a representation which would do 

justice to all known properties of matter.1

Morris and Thorne found that the stuff  they needed to hold a wormhole open 

violates the weak energy condition (i.e., it has a negative energy density, at 

least as seen by some observers), so they dubbed it “exotic matter.” This mate-

rial must have a repulsive gravitational eff ect on ordinary matter. To see why 

this must be so, recall the eff ect that gravity has on light rays. Normal gravita-

tional fi elds tend to focus light rays, much like a lens. Refer to the wormhole 

illustration in fi gure 9.1. Let the heavy black lines in the fi gure represent light 

rays falling radially (i.e., toward the center) into one mouth, A, of a wormhole. 

The rays initially get closer together as they approach the wormhole throat but 

then diverge (i.e., move farther apart) as they pass through the throat and exit 

the other mouth, B. This implies that there must be something to counteract 

the normal tendency of light rays to focus under the infl uence of gravity. It is 

the negative energy (“exotic matter”) near the throat that provides a repulsive 

gravitational eff ect on the light rays, causing them to defocus.

The question of whether the laws of physics allow the existence of exotic 

matter is a subject we will discuss extensively in a later chapter. For now, let’s 

just assume that we can obtain the exotic matter required and press on to dis-

cuss the possible consequences of traversable wormholes.

For a wormhole to be “traversable,” in the sense of Morris and Thorne, it 

has to be comfortable for human travelers. This means that, in addition to hav-

ing no singularities and no event horizon, the wormhole must have no large 

tidal forces that could potentially tear a human body to pieces and must have 

traversal times much smaller than a human lifetime. In their paper, they gave a 

number of specifi c examples of traversable wormholes with these properties. 

One disadvantage of their wormholes is that they were all spherically symmet-

ric with the exotic matter tending to be distributed near the throat. Therefore, 

an observer traveling through such a wormhole must necessarily pass through 

the exotic matter that maintains the wormhole against collapse. Since the ef-

fects of exotic matter on a human body are unknown, this could be a potential 

problem. Morris and Thorne suggested that one way to avoid this might be to 

1. Albert Einstein, “Physics and Reality” (1936), reprinted in Ideas and Opinions (New York: 

Crown Publishers, 1954), 311.
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insert a vacuum tube through the throat that would shield the traveler from the 

exotic matter.

Matt Visser, now at Victoria University of  Wellington in New Zealand, came 

up with a clever way around this problem. He devised a solution for a cubical 

wormhole. In his wormhole, the exotic matter is confi ned to the “struts” mak-

ing up the edges of the cube. As a result, a traveler can enter the wormhole 

through one of the cube faces without directly encountering any exotic matter. 

Over the last two decades, Visser has probably contributed more to the subjects 

of wormholes and time travel than anyone since Kip Thorne. He has written 

a book for experts on the subject entitled Lorentzian Wormholes: From Einstein to 

Hawking (1995). The book discusses a wide variety of wormhole solutions in 

addition to the original ones of Morris and Thorne. We shall have more to say 

about Visser in a later chapter.

Warp Bubbles

In 1994, it was shown by Miguel Alcubierre, then at the University of Cardiff  

in the United Kingdom, that general relativity also allows the possibility that 

one could create a “warp drive” with many of the properties of the one seen on 

Star Trek. This consists of a bubble of curved spacetime surrounding a space-

ship. In Alcubierre’s original model, the ship is propelled by an expansion of 

spacetime behind the ship and a contraction of spacetime in front. (Later work 

by José Natário at the Instituto Superior Técnico in Portugal showed that this 

was not a necessary feature for a warp drive spacetime. In his model, spacetime 

is contracted toward the front of the ship and expanded in the direction per-

pendicular to the ship’s motion. Natário’s bubble “slides” through spacetime 

by loosely “pushing space aside.”) The bubble and its contents could travel 

through spacetime at a speed faster than light, as seen by observers outside 

the bubble.

Once again, this might seem like a violation of the ultimate speed limit im-

posed by special relativity. However, it is important to note that in this case we 

are dealing with a curved, dynamic, spacetime, whereas the spacetime of special 

relativity is fl at and unchanging. The prohibition against reaching or exceed-

ing light speed is in fact obeyed, but not in the way you might expect. Special 

relativity demands that the spaceship’s worldline must always lie inside its local 

light cone. That is, in fact, true in the Alcubierre spacetime. But because the 

spacetime is curved in an unusual way, the local light cones inside the warp 
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bubble are tilted at an angle with respect to the local light cones outside the 

bubble. The Alcubierre spacetime is illustrated in fi gure 9.2. The shaded re-

gion represents the “worldtube” of the bubble, that is, its path through spacet-

ime. The thick black line represents the worldline of the spaceship, assumed to 

sit at the center of the bubble. Note that the light cones outside the bubble are 

just those of fl at spacetime. As we move up from the bottom of the diagram, 

we see that inside the worldtube of the bubble, the light cones are tilted at an-

gles greater than 45°. However, as you can see, the worldline of the  spaceship 

 always lies inside its local light cone, although it is outside the light cone of 

distant observers. So essentially what we’ve done here is “speed up” light in-

fig. 9.2. The Alcubierre warp drive spacetime (adapted from 

fi g. 7.2 of James B. Hartle’s book Gravity: An Introduction to 

Einstein’s General Relativity [San Francisco: Addison Wesley 

(2003), 145]). Light cones inside the warp bubble are tilted 

at angles greater than 45° with respect to the light cones 

outside.
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side the bubble relative to observers outside the bubble. Observers inside the 

bubble can thus travel at faster than light speeds relative to observers outside, 

but still slower than the local light speed inside the bubble.

There are a number of other nice features of Alcubierre’s model. Spacetime 

inside the bubble is fl at, so the observers inside the bubble are in free fall. 

They also experience no wrenching tidal forces; all the spacetime curvature 

is in the bubble walls. In addition, the spacetime is designed in such a way so 

that clocks inside the bubble tick at the same rate as clocks outside the bubble, 

so the time dilation problems of special relativity are avoided. Recall in our 

earlier discussion of the twin paradox, in ordinary fl at spacetime, a rocket ob-

server could make a long journey to a distant star in her own lifetime, but when 

she returns to earth, hundreds of thousands of years may have passed. That’s 

because her clocks and the clocks on earth don’t tick at the same rate. The 

Alcubierre spacetime avoids that problem, so that if you travel from here to a 

space station near Betelgeuse, your clocks and their clocks are ticking at the 

same rate and there’s no relative aging. Handy, if you want to have a sensible 

United Federation of Planets (always wondered how they got around that in 

Star Trek . . . ). Another advantage is that, in contrast with the case of a worm-

hole, building a warp drive does not require poking a hole in spacetime, which 

nobody knows how to do.

One big disadvantage of warp bubbles, as noted by Alcubierre himself, is 

that they, like wormholes, require the use of “exotic matter.” Another distinct 

disadvantage, fi rst noted by Serguei Krasnikov, then at the Central Astronomi-

cal Observatory at Pulkova in St. Petersberg, is that it is not possible for ob-

servers inside the warp bubble to steer it! This is because the front edge of 

the bubble is not causally connected to its interior. To see this subtle but very 

important point, refer to fi gure 9.3.

The symbol v in fi gure 9.3 denotes the speed of the entire bubble, as mea-

sured by external observers, while c, as usual, stands for the speed of light in 

fl at spacetime. For superluminal travel, we must have v > c. Inside the bubble, 

the speed of a light beam, vbeam, as measured by observers outside the bubble, is equal 

to the speed of light plus the speed of the bubble, that is, c + v. That’s because 

all of the contents of the bubble, including the light beam, are carried along at 

a speed of v > c, relative to external observers. Outside the bubble, the speed of 

a light beam is simply c, relative to these same observers. We expect the beam 

speed to vary continuously as a function of the distance from the center of the 

bubble, as we go from the interior to the exterior. Therefore, if the beam speed 

is c + v inside the bubble, with v > c, and drops to c outside the outer bubble 
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wall, then somewhere inside the bubble it must pass through vbeam = v. This is il-

lustrated in fi gure 9.3, which plots the speed of a light beam versus the (radial) 

distance from the center of the bubble. But when the speed of a light beam is 

vbeam = v, which it reaches inside the bubble wall, the light beam is traveling 

at the same speed as the bubble. Therefore, it will simply travel along with 

the bubble and never make it to the bubble’s outer edge. Hence, an observer 

inside the bubble cannot send a causal signal to the outer wall of the bubble, 

so that part of the bubble is out of his control. To steer the bubble, a starship 

captain would have to be able to contact all parts of the bubble. Therefore, 

Captain Kirk will be in for a surprise when he tells his helmsman, “Hard about, 

Mr. Sulu, the Klingons are attacking!”

Given the problems with steering the bubble, we might say that riding in an 

Alcubierre warp bubble is analogous to catching a streetcar. You have no con-

trol over the car; you just hope it takes you to where you want to go. Also like 

vbeam   =   c + v c  <  vbeam  <   v

c  <  vbeam  <   v

vbeam =  c

       v  >  c

vbeam

c + v

c

v

radial distance 

from the  center 

of the bubble

inner

bubble wall 

inner

bubble wall 

outer

bubble wall

light beam

outer

bubble wall

fig. 9.3. The speed of a light beam in the interior of the bubble, inside the 

bubble wall, and outside the bubble. The interior of the bubble is causally dis-

connected from the outer bubble wall.
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streetcars, you can’t create and control warp bubbles on demand, they have to 

be prepared in advance before you can use them, as also pointed out by Kras-

nikov. Suppose you want to create a warp bubble that will get you from earth 

to Alpha Centauri 4 light-years away (it’s actually about 4.2, but let’s use 4 to 

make the arithmetic simpler) in one day, say, on January 1, 2200. You can’t do 

this by starting on December 31, 2199. By then the spacetime point on Alpha 

Centauri on January 1, 2200 is far outside your future light cone, and the ear-

liest time at which you can aff ect anything happening on the star is Decem-

ber 31, 2203. Remember from chapter 4, you can’t do anything to aff ect what 

happens outside your future light cone. If you want a warp bubble to arrive 

at the star on January 1, 2200, the latest date at which you arrange for this 

is Jan. 1, 2196. Starting then, you can in principle arrange for a warp bubble 

to leave your location, on December 31, 2199, and arrive at the star on Janu-

ary 1, 2200. If you wanted to, you could then arrange for a daily warp bubble 

service to Alpha Centauri arriving every day after January 1, 2200. Of course, 

all the foregoing is based on one minor assumption: we are supposing that 

people by 2200 will have learned how to create warp bubbles that can travel 

faster than light.

A related problem, pointed out by Natário, as well as Chad Clark, Bill His-

cock, and Shane Larson, then all at Montana State University, is that there are 

horizons that form in front of and behind the starship when the bubble speed 

reaches the speed of light. The horizon behind the ship consists of a region 

from which no light rays can reach the ship. The horizon in front consists of a 

region in which no signal can be received from the ship. This is easiest to see if 

one considers the simple case of the behavior of a light wave traveling directly 

along the line of the ship’s direction of motion. A light wave following directly 

behind the ship can never catch up to it once the ship reaches and exceeds the 

speed of light. A light wave emitted from the front of the starship, along its 

direction of motion, will get outrun by the front part of the bubble, so there is 

a region in front of the ship which such waves can never reach. Hiscock raised 

the possibility that these horizons might disrupt the stability of the quantum 

vacuum around the ship, causing a large “back-reaction” eff ect on the bubble 

that would prevent it from ever reaching the speed of light. More recent work 

by Stefano Finazzi, Stefano Liberati, (from the International School for Ad-

vanced Studies in Trieste) and Carlos Barcelo (from the Instituto de Astrofısica 

de Andalucıa in Spain) appears to confi rm this idea. (We will have more to say 

about quantum vacuum back-reaction eff ects later in connection with worm-

hole time machines.)
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The Krasnikov Tube: The Superluminal Subway

Shortly after Serguei Krasnikov noted the steering problem with Alcubierre’s 

warp drive, he came up with a diff erent model for a warp drive. Rather than us-

ing transitory warp bubbles, he suggested one might create tube-like regions 

of space, reaching, for example, from earth to Alpha Centauri, within which 

space would be permanently modifi ed to allow superluminal travel in one di-

rection. He suggested that a spaceship crew could journey at sub-light speed 

from earth to a distant star, modifying the structure of spacetime in a tubular 

region behind the ship as it went. The modifi cation would consist of “open-

ing out” the backward part of the future light cones, that is, the part that points 

in the direction opposite the direction of the ship’s motion. This would be a 

causal process, unlike trying to steer a warp bubble.

The crew would save no time on the outbound journey, over and above the 

usual time dilation eff ects of special relativity, because they would be traveling 

at sub-light speed during this part of the trip. But on the return journey, de-

pending on how much the future light cones in the backward spatial direction 

(i.e., along the return path) had been opened out, the ship could travel at ar-

bitrarily high speed and return arbitrarily close to the time it left, as measured 

by clocks on earth. As a result, the round-trip time could be made arbitrarily 

short!

Unlike the warp bubble where space is modifi ed only temporarily, during 

the bubble’s passage, once the Krasnikov tube has been created, the space 

within remains modifi ed, and superluminal travel in the return direction of the 

originating rocket ship remains permanently possible. If riding a warp bubble 

is like catching a streetcar, then travel in the Krasnikov spacetime is analogous 

to catching a subway train. As a result, we dubbed it the “superluminal sub-

way,” or, the “Krasnikov tube” in our fi rst collaboration, an article in Physical 

Review (1997) elaborating on several aspects of Krasnikov’s original work.

The Krasnikov spacetime is illustrated in fi gure 9.4. The light cones near 

the edges of the fi gure are just those of fl at spacetime. The thick gray line in-

clined at a less-than 45° angle represents the worldline of the ship—and the 

“digging” of the Krasnikov tube—on the outbound journey. The two thinner 

dark gray lines represent the worldlines of the ends of the tube. The region 

bounded by the three gray lines is the spacetime history of the interior of the 

tube (which is why the central white region extends upward in the diagram). 

The backward parts of the future light cones in this region are opened outward, 

with a maximum allowed opening of 180°. (Note that the forward-pointing 
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parts of the light cones remain unmodifi ed inside the tube. They are parallel 

to the forward-pointing parts of the light cones outside the tube. In this latter 

limiting case, a ship that immediately turns around upon the completion of its 

outbound journey could travel back along an antiparallel line to its outbound 

path and reach its departure point arbitrarily close to the time it left. To see 

time

space
 Earth

star

Earth

departure

 arrival

fig. 9.4. The Krasnikov tube, a superluminal subway. Light cones inside the tube 

are stretched out in the “backward” direction. As a result, the roundtrip can be made 

arbitrarily short!
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this in the fi gure, imagine the worldline arrow representing the return trip to 

be parallel but opposite in direction to the thick inclined line. If you then make 

these two lines arbitrarily close together, corresponding to an arbitrarily quick 

turnaround time, you could make the total time interval, measured on the earth 

clocks between departure and arrival, arbitrarily small.

However, as you might suspect by this time, Krasnikov tubes, like worm-

holes and warp bubbles, also require exotic matter for their construction and 

maintenance. Additional work by Ken Olum and by Sijie Gao and Bob Wald at 

the University of Chicago suggests that any sort of superluminal travel requires 

“exotic matter,” not just the ones we have discussed.

Wormholes, Warp Drives, and Time Machines

Once you have created one wormhole, warp bubble, or Krasnikov tube, pre-

sumably, you should be able to make another. And with two such objects one 

can make a time machine, in principle. The basic idea is similar to the two-

tachyon transmitter-receiver system discussed in chapter 6.

Figure 9.5 shows the space and time axes of two inertial frames that are 

moving relative to one another (the light gray 45° line represents the path of 

a light ray, for reference). The events C and D lie on an x = const line and so are 

simultaneous in the unprimed frame. The events A and B lie on an x' = const line 

and so are simultaneous in the primed frame, which is moving with respect to 

the unprimed frame. The events A and B, and C and D, respectively, could rep-

resent the mouths of two wormholes. The dashed line paths could represent 

the paths through the wormholes from A to B, and from C to D. If the internal 

length can be made arbitrarily short, then A and B could be essentially glued 

together internally, though possibly widely separated in the external world, 

and similarly for C and D.

Consider the following scenario. Suppose we succeed in constructing 

a wormhole that connects events C and D, which are simultaneous in the 

unprimed coordinate system. The time and space coordinates of C and D in 

that system will thus be (T,xc) and (T,xD), respectively. By the principles of rela-

tivity, we can construct a similar wormhole that connects events A and B, which 

are simultaneous in the primed frame, where they will have coordinates (T',x'A) 

and (T',x'B). Since, according to the Lorentz transformations, the time of an 

event in one inertial frame depends on both its time and position in a diff er-

ent frame, the coordinates of the events A and B in the unprimed frame will be 

(TA,xA) and (TB,xB), with TA ≠ TB, as shown in fi gure 9.5.
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An observer entering a wormhole mouth at A would instantaneously (as 

measured by her own clock) emerge at B, at an earlier time in the unprimed 

frame. If she then journeys on a timelike path through normal space from B to 

C and enters the second wormhole at the mouth located at C, she will fi nd her-

self instantly emerging from the mouth at D. Note that D is in the past of her 

departure event A. If she then travels from D to A along a timelike path through 

normal space, she will arrive at the moment she left. She might then prevent 

herself from setting out in the fi rst place.

What makes this scenario possible is the relative motion between the two 

wormholes and the fact that for spacelike paths, unlike for timelike or lightlike 

paths, the time order of events is not invariant. As a result, even though A and 

B are simultaneous in the primed frame, B lies in the past of A in the unprimed 

frame. (Incidentally, the crossing of the two dashed lines is simply the result 

x’

x

c t
c t’

path
 o

f a
 lig

ht r
ay

C

B

A

D

fig. 9.5. Superluminal travel can lead to backward time travel.
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of restricting our spacetime diagram to one space dimension. To see this, draw 

the unprimed coordinate system and the points C and D on one piece of paper 

and the primed coordinate system with points A and B on another sheet paral-

lel to the fi rst. By putting the sheets close together, we can still make the paths 

BC and DA timelike without having the two dashed lines overlap.)

You may have noticed this scenario is very similar to one in chapter 6 where 

we showed that tachyons could be used to send a message into the past. In 

fact, the scenario we have described for creating a time machine would work 

for other methods of superluminal travel, as well. It depends crucially on being 

able to causally connect points in spacetime that would otherwise be separated 

by a spacelike interval. The dashed line between C and D in fi gure 9.5 could 

represent the path of a warp bubble, with the dashed line between A and B 

representing the path of a second warp bubble moving with respect to the fi rst, 

with both of them moving along spacelike trajectories. By jumping from one 

warp bubble to the other, one can make a round-trip (this was fi rst shown in a 

paper by Allen in 1996).

Similarly, the dotted paths could represent two Krasnikov tubes that are 

moving with respect to one another, with A and B being the ends of one tube 

and C and D representing the ends of the other tube. One of the tubes would 

have its light cones opened out in one direction; the second would have its 

light cones opened out in the opposite direction. By traveling through one tube 

and then the other, you would always be traveling in a faster-than-light direc-

tion (this was shown in a paper written by both authors). Note also that these 

scenarios require two-way superluminal travel in order to be able to make a 

round-trip, to close your path in both space and time.

Kip Thorne, together with Mike Morris and another of Thorne’s students, 

Ulvi Yurtsever, discovered a second, very ingenious way of making a wormhole 

time machine using just a single wormhole. Place one mouth, A, of the worm-

hole on earth. Put the other mouth, B, in a rocket ship and send it off  at a speed 

near the speed of light and then bring it and the rocket ship back to earth. 

This scenario makes use of the famous “twin paradox” of special relativity, 

discussed in chapter 5. By jumping into mouth B, one can emerge out of mouth 

A in the past. Let’s see how this works.

In fi gure 9.6, the gray vertical line represents mouth A of the wormhole, 

which remains on earth. The curved gray line depicts the worldline of mouth 

B, which is accelerated to high speed and then eventually returned to earth. No-

tice that this part of the picture looks just like our twin paradox spacetime dia-

gram (fi gure 5.3). So clocks just outside the wormhole mouths experience the 



Wormholes and Warp Bubbles > 127

usual time dilation of special relativity. The length of the wormhole (i.e., the 

distance as measured through the wormhole) is assumed to always be  arbitrarily 

short. (This is not obvious from our discussion. For more detail on this point, 

refer to fi gure 14.6 of Kip Thorne’s book Black Holes and Time Warps.2)

The circled points with the same numbers, connected by dotted lines, are at 

the same proper times, as measured by clocks right at the wormhole mouths. 

2. Kip Thorne, Black Holes and Time Warps (New York: W. W. Norton and Co., 1994), 

p. 501.
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So, for example, if you were in the rocket ship at the event labeled “1” at mouth 

B looking through the wormhole, and if the clock just outside mouth B in the 

cabin of the rocket ship is reading 1:00, so too is the clock at mouth A at the 

corresponding event on its worldline labeled “1.” Because the length of the 

wormhole is arbitrarily short, these two points are essentially the same point. 

Clocks on the spaceship, compared to clocks on earth as seen through the exte-

rior cabin window, are time dilated. However, clocks right at each mouth, when 

viewed through the wormhole, read the same time. This means that if you step 

through wormhole mouth B at event 1, you would emerge at the corresponding 

event 1 on the worldline of mouth A.

Notice that the dashed paths that connect the similarly numbered points are 

initially spacelike (i.e., inclined at angles greater than 45°) in the external spa-

cetime outside the wormhole. Therefore, if you jumped into mouth B at event 

1 and emerged from mouth A at the corresponding event 1, you would have to 

travel along a spacelike path in the external space to get back to event 1 at mouth 

B. As we move upward in the spacetime diagram, the dotted paths become 

progressively less spacelike until we come to the thick dashed line. This criti-

cal line represents the fi rst possible closed lightlike (null) curve. A light wave 

entering mouth B can travel through the wormhole and emerge from mouth 

A, then travel along a lightlike path in the external space outside the wormhole 

(along the thick dashed line) and return to its starting point in both space and 

time. This null curve represents the boundary of the region in spacetime where 

time travel to the past becomes possible. The light cone of which it is a part is 

the “time travel horizon,” also called the “Cauchy horizon” or the “chronology 

horizon.”

An observer could jump into mouth B at event 4, emerge from mouth A at 

the corresponding event 4, travel through the external space along a timelike 

path, and return to her departure point in both space and time. Hence, the 

events labeled “4” are connected by a closed timelike curve. The time travel ho-

rizon separates the region of spacetime with no closed timelike curves from 

the region of spacetime with closed timelike curves. In the region above the 

horizon, an observer who jumps through mouth B will emerge from mouth A 

in the past. An observer who initially jumps through mouth A will emerge from 

mouth B in the future. This type of time travel cannot be accomplished in the 

usual twin paradox scenario, because, in that case, the two worldlines are not 

connected through a wormhole.

It is important to note that because of the time travel horizon, a time traveler 

cannot return to events that occur before the time machine is fi rst activated, that is, events 
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that occur prior to the formation of the fi rst closed null curve. Therefore, if the 

fi rst time machine is fi rst activated in the year 2050, then would-be time travel-

ers cannot return to any time prior to 2050. So you can’t use such a machine 

to go back and hunt dinosaurs (unless some very advanced and much more 

ancient civilization has built one of these things and left it conveniently nearby 

for us to use).

Shortly after the article by Morris, Thorne, Yurtsever appeared, other physi-

cists proposed alternative scenarios for turning wormholes into time ma-

chines. Igor Novikov, now at the Niels Bohr Institute in Copenhagen and a 

longtime friend of Thorne, suggested that, rather than moving one mouth of 

the wormhole away from earth and back again to achieve the necessary time 

dilation, one could instead whirl it in a circle around the other mouth. Valery 

Frolov, of the University of Alberta, and Novikov then suggested yet another 

method: using gravitational time dilation to create the time shift between the 

mouths. One mouth could be placed near a source of high gravity, such as a 

neutron star, while the other mouth could be placed farther away. Frolov and 

Novikov showed that, if one waited long enough, such a wormhole would nat-

urally evolve into a time machine.

The eff ect is the same as in the twin paradox scenario. The only diff erence 

is that gravitational time dilation is used instead of special relativistic time 

dilation to produce the time shift. Their result suggested that wormholes are 

rather naturally disposed to turning into time machines. Any diff erence in 

the gravitational fi eld between the wormhole mouths would have the eff ect of 

gradually time dilating one mouth relative to the other, resulting in eventual 

time machine formation. How rapidly this takes place depends on the size of 

the diff erence in gravitational fi eld between the mouths. A wormhole with 

one mouth placed near the surface of a neutron star would evolve into a time 

machine much faster than one whose mouth was placed near the surface of 

the earth.

“Curiouser and Curiouser . . . ”: Paradoxes

Once the scenarios for creating wormhole time machines had been proposed, 

Thorne and his collaborators began to analyze the paradoxes associated with 

backward time travel. To simplify the problem, they wanted to avoid compli-

cated issues like human free will, which is tricky enough even without the pres-

ence of a time machine. So instead of using human travelers, they used billiard 

balls. Human beings are very complex systems whose behavior is notoriously 
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hard to predict. But the behavior of billiard balls is easily predicted by the laws 

of classical physics. Thorne and his colleagues studied the billiard ball equiva-

lent of the grandfather paradox.

In the standard paradox, a time traveler goes back in time to shoot his 

grandfather. As a result of the deed, one of the time traveler’s parents is never 

conceived and so the time traveler is never born. But if he was never born, 

he could never have built the time machine, gone back in time, and shot his 

grandfather. So we have the logically inconsistent situation that an event—the 

grandfather’s murder—happens if and only if it doesn’t happen. In the usual 

paradox, we have the possibility that the time traveler may change his mind. 

For the billiard ball time traveler, there is no mind to change, so the outcome 

should be unambiguous. A situation like this in which the occurrence of some 

event, call it event 2 (the time traveler going back in time in the example), 

causes a another second event, say event 1 (the grandfather’s murder), which 

in turn causes event 2 not to occur, is sometimes called an “inconsistent causal 

loop.” Such loops result in logical paradoxes, and the laws of physics must be 

such that they do not occur.

The possibility of having such a closed causal loop only arises when back-

ward time travel is possible, that is, when one has a time machine. Conven-

tional physics includes a “principle of causality,” according to which eff ects 

always follow causes in time. Thus, if event 1 causes event 2, then 2 occurs at 

a later time than 1 and, thus, 2 cannot cause (or prevent) 1. This principle can 

clearly no longer be universally true if one has a time machine, since pressing 

a button on a time machine in the year 2500 might cause a time traveler to ap-

pear in, for example, the year 2499.

The billiard ball version of the grandfather paradox is illustrated in Figures 

9.7. In this case, the two mouths of the wormhole connect two places at diff er-

ent times. The times shown in the fi gure are those on clocks outside the worm-

hole. The terms “older” and “younger” refer to time as measured by a clock on the 

billiard ball. Thorne and colleagues considered the following kind of  scenario. 

A billiard ball is headed for mouth B of a wormhole time machine at external 

time 3:50 p.m., as shown in fi gure 9.7a. It enters the wormhole at 5:00 p.m., 

according to the external clocks. At 4:00 p.m., according to the external clocks, 

a slightly older (in terms of the billiard ball’s own time) version of the billiard 

ball emerges from mouth A (fi gure 9.7b), and later collides with the younger 

version of itself at 4:30 p.m., external time, as shown in fi gure 9.7c. The col-

lision knocks the younger billiard ball off  course, defl ecting it so that it does 

not fall into the wormhole (fi gure 9.7d). So we have the following situation: 
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A billiard ball falls into a wormhole and emerges an hour into its own past. 

It then collides with the earlier version of itself, preventing the younger ver-

sion from entering the wormhole. But if the younger version never entered 

the wormhole, there would have been no later version to emerge and collide 

with its younger self. Therefore, the younger billiard ball would have entered 

the wormhole, as there was nothing to defl ect it. But if the younger version 
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fig. 9.7a–d. The wormhole version of the grandfather paradox.
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enters the wormhole, the older version emerges at an earlier time and prevents 

it from doing so. Therefore, the billiard ball enters the wormhole if and only 

if it does not enter the wormhole. So we have an inconsistent causal loop, the 

billiard ball equivalent of the grandfather paradox. In this context, it is some-

times called a “self-inconsistent solution” of the physical equations, such as 

Newton’s laws, governing the motion of the billiard balls.

Let us now consider the situation from the viewpoint of the billiard ball. 

Imagine there is also a clock attached to the billiard ball, which agrees with 

the external clocks up to the time the ball enters the wormhole. (We make the 

realistic assumption that the ball’s speed is much less than the speed of light; 

thus, the eff ect of the slowing down of a moving clock, predicted by the special 

theory of relativity, will be completely negligible.) First of all, the reading of the 

billiard ball clock will continue to increase as it goes through the wormhole. If 

we replace the ball with a time traveler, then what we might call the personal 

time of the traveler will continue to run forward as she travels backward in time 

relative to the rest of the universe. This is, in fact, what is meant by traveling 

backward in time. She will remember her entrance into the wormhole as being 

in her own personal past as she emerges from mouth A at an earlier external 

time (one could also repeat our earlier series of fi gures, labeling the times on 

the ball in addition to or instead of the external times).

Moreover, the internal distance between mouths A and B, that is, the dis-

tance going through the wormhole, will be much less than the external dis-

tance. (That’s the whole point of a wormhole.) Therefore, the elapsed time on 

the billiard ball clock will be much less than one hour. In fact, for simplicity, 

we often picture the internal distance through a wormhole as being essen-

tially zero, although this is not necessary. Making this approximation, going 

through a wormhole would be like going through a door between two diff er-

ent rooms. However, the clocks in the two rooms would disagree with one 

another. If we make this assumption that the internal distance through the 

wormhole is negligible, then one would see the billiard ball clock reading 

5:00 p.m., as it emerged from mouth A. If the wormhole is a little longer, so 

that it takes, let us say, one minute of its own time for the ball to get through 

the wormhole, the ball clock would read 5:01p.m. as it emerges.

Quantities such as the starting position and velocity of an object are called 

“initial conditions” by physicists. In the case of the billiard ball scenario, 

Thorne and his collaborators also found that for every set of initial conditions, 

such as the starting position and velocity of the ball, it seemed that one could 

always fi nd a self-consistent solution with no paradox. This is illustrated in 



Wormholes and Warp Bubbles > 133

 fi gure 9.8. For example, in the scenario depicted above, suppose the older 

version of the billiard ball strikes its younger self a glancing blow instead of a 

direct-line collision. If the blow is at just the correct angle, it can defl ect its ear-

lier self enough so that it still enters the wormhole mouth B —but at a slightly 

diff erent point on the wormhole mouth than in our previous scenario. It then 

emerges at a diff erent angle from mouth A, which causes it to follow just the 
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fig. 9.8a–d. A self-consistent solution to the paradox.
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path required for it to hit its younger self the proper glancing blow to defl ect 

it into just the right point on mouth B. There is no paradox, and this scenario 

is self-consistent.

So we see that, for the billiard ball model, although there is an inconsistent 

scenario, given the same initial position and velocity of the billiard ball (the same 

initial conditions), there also exists a self-consistent scenario. This suggests at 

least one possible resolution to the grandfather paradox. Perhaps in situations 

where, for the same initial conditions, both inconsistent and self-consistent 

solutions exist, nature will always choose the self-consistent one. Igor Novikov 

has championed the idea that the laws of physics allow only self-consistent 

(i.e., nonparadoxical) solutions. Given a supposed paradoxical scenario, 

Novikov conjectures that there will always be at least one self-consistent solu-

tion for the same initial conditions. Novikov and his colleagues examined a 

variety of models where this indeed seems to be the case.

There was another surprise in store for Thorne and his team. They discov-

ered that there were in fact not just one—but an infi nite number of—such self-

consistent solutions with the same initial conditions! These correspond to the 

number of times the billiard ball circulates through the wormhole prior to exit-

ing mouth A and colliding with its younger self. This situation of having more 

than one possible solution is something that occurs in classical physics only in 

the presence of time machines, when closed causal loops can occur. In general 

in classical physics, if one knows the position and velocity of all the particles 

in some system at some time (i.e., the initial conditions), as well as the forces 

acting on the particle, Newton’s laws of motion allow you to determine the 

 subsequent behavior of the particles uniquely (an analogous statement also 

holds true when the eff ects of quantum mechanics are taken into account). 

In the cases where there are a number of self-consistent solutions, Novikov’s 

“self-consistency conjecture” does not by itself tell us which of these is se-

lected by the laws of physics. It only tells us that when confronted with a situ-

ation where there are both inconsistent solutions and one or more consistent 

solutions, the actually observed, physical solution will be a consistent one.

Before leaving this discussion, there is one more subject we should exam-

ine. That is the question of conservation of energy. Let us return to fi gure 9.8. 

Notice that in fi gure 9.8a, observers will see only one billiard ball present at 

3:50 p.m., while at 4:00 p.m. they will see two (fi gure 9.8b). The second is the 

older version of the original ball that has traveled backward in time through 

the wormhole and reemerged. Since the billiard ball has an energy mbc
2 (ne-

glecting the negligibly small kinetic energy of motion of the billiard ball, 
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whose speed is much less than c), where mb is the mass of the billiard ball, the 

appearance of the second ball would seem to indicate a gross violation of the 

law of conservation of energy. A second ball will be present, and thus, violation 

of energy conservation will persist until 5:00 p.m. At that time, as seen in fi g-

ure 9.8d, the younger version of the ball will disappear into the wormhole, and 

after that there will once more be only a single ball present, as was true before 

4:00 p.m.

All our experience indicates that violation of energy conservation is experi-

mentally unacceptable. To avoid it, we must assume that during the external 

time between 4:00 p.m. and 5:00 p.m., the extra energy represented by the sec-

ond ball must be compensated by a corresponding decrease in the mass of the 

wormhole due to its interaction with the billiard ball that is passing backward 

in time through it from 5:00 p.m. to 4:00 p.m. Therefore, if the original mass 

of the wormhole was M, its mass will be reduced to M – mb during that period. 

This will leave the total mass of the wormhole plus two billiard-ball system 

between 4:00 p.m. and 5:00 p.m. as 2mb + (M – mb) = M + mb, which was the 

original mass of the wormhole plus billiard ball. After 5:00 p.m., only the older 

version of the billiard ball that went through the wormhole is present outside 

the wormhole. Therefore, the wormhole mass has been restored to its original 

value of M, so again the total mass of the system has its original, energy con-

serving, value of M + mb. Thus, the wormhole time machine respects the law 

of conservation of energy. This is in contrast to H. G. Wells’s time machine, 

which suddenly disappears at one time and reappears at another with no com-

pensating energy increase or decrease in its surroundings.
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Banana Peels and Parallel Worlds

A paradox, a paradox, a most ingenious paradox.

w. s. gilbert, The Pirates of Penzance

Only one accomplishment is beyond both 

the power and mercy of the Gods. They cannot 

make the past as though it had never been.

aeschylus

Types of Paradoxes

In this chapter we will discuss time travel 

paradoxes and their possible resolutions. 

There are two kinds of paradox that we shall discuss: those we call “consis-

tency paradoxes” and also “information,” or, “bootstrap” paradoxes. An exam-

ple of a consistency paradox is the grandfather paradox (discussed in chapter 

9). In this kind of paradox, an event (e.g., the murder of one’s grandfather) 

both happens and doesn’t happen, which is logically inconsistent. An infor-

mation paradox occurs when information (or even objects) can exist without 

an origin, apparently popping out of nowhere. Let us fi rst consider informa-

tion paradoxes.

Information Paradoxes

An example of an information paradox is one that we will call “the mathema-

tician’s proof paradox.” A time traveler in 2040 goes to the library and copies 

a proof out of a math textbook of a very famous theorem. Suppose that the 

time traveler then goes back in the past to visit the mathematician who proved 

the theorem, traveling back to a time before he discovered the proof. The time 

traveler tells the mathematician, “You are going to be famous,” and shows 
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him the proof. The mathematician dutifully copies it down, and subsequently 

publishes it, establishing his fame in the process. (Of course, the time trav-

eler need not bodily travel back into the past; he could merely send the proof 

back.) The question is, where did the proof come from? Note that, unlike in the 

grandfather paradox, everything in this scenario is consistent. The mathemati-

cian got the proof from the time traveler, who in turn got it from a book in the 

library. The real question is: where did the information contained in the proof 

come from originally? Although consistent, this “free lunch” example seems 

to go against our deeply held beliefs about how the world works. We are not 

used to information just appearing out of nowhere. (Too bad, it would be a 

great way to write a PhD thesis!)

Here’s another one for you. Carol and Ralph meet one another in the year 

2040. Carol says to Ralph, “Go back in time to 2020 and tell my past self that 

you want to have this meeting with me in 2040. Tell her that these are the in-

structions she should give you when she meets you in 2040.” Ralph uses a time 

machine to travel to the year 2020 and meets the past version of Carol. He tells 

her: “Your future self told me that you should meet with me in 2040 and give 

me the following instructions: ‘Go back in time to 2020 and tell my past self 

that you want to have this meeting with me in 2040. Tell her that these are the 

instructions she should give you when she meets you in 2040.’” Carol gets into 

another time machine (or simply waits through the natural aging process) and 

travels to 2040 where she meets Ralph. Question: Who arranged the meeting 

in 2040?

“Jinnee Balls” and Clever Spacecraft

In a 1992 article, Lossev and Novikov considered the possibility of self-exist-

ing objects, which they called “jinnee1 balls,” which might be associated with 

time machines. For example, suppose that we have a wormhole time machine. 

A billiard ball may suddenly exit one mouth of the wormhole, travel through 

normal space to the other mouth, and enter it, emerging from the fi rst mouth 

in the past, and so on. All that such an object does is endlessly loop though the 

time machine. The ball’s history has no beginning and no end—it is “trapped” 

in the time machine.

However, as Lossev and Novikov point out, such an object is forbidden by 

1. “Jinnee” (also spelled “jinni,” “jinn,” or “djinn”)—is the name of a spirit or class of spirits 

featured in many Arabian tales. The more-familiar Western spelling is “genie.”
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the second law of thermodynamics. In order for the scenario we described to 

be self-consistent, the ball that emerges from the fi rst mouth must be identical 

in every way to the ball that enters the other mouth. The ball, like all macro-

scopic objects, will have some temperature above absolute zero, and therefore 

will radiate heat as it travels. Therefore in traveling through normal space from 

one mouth to the other, the ball “ages” in the sense that it loses energy in the 

form of heat. Hence, the ball that emerges from the wormhole mouth in the 

past cannot be the same ball that entered the other mouth, because it has lost 

energy during the trip. So, this scenario is not self-consistent.

An example of this kind of inconsistency in science fi ction is found in the 

(rather bad) movie Somewhere in Time. A mysterious older woman gives a young 

playwright an antique pocket watch after seeing the opening of his new play. 

Years later, he stays in a hotel where he sees an old photograph of that same 

woman, as she appeared in much younger days. Determined to meet her, he 

“wills” himself back into the past (huh?), encounters her and (naturally) falls in 

love. At some point, he ends up giving her a watch (of course, this is the same 

one she will give him years in the future), and later is involuntarily (and rather 

inexplicably) snapped back to the future. The watch is a “jinnee” object. But 

do you see the problem (apart from the mixing of tenses)? Suppose she gives 

him the watch when it is already an antique, and he keeps it for ten years until 

he makes his time travel journey. When he gives her the watch in the past, the 

watch is ten years older (in terms of its own time) than it was when he received 

it. Suppose she then keeps it for another forty years before giving it to him in 

the future, when she is an elderly woman. When she gives him the watch, it is 

then fi fty years older (again, in terms of its own time), than when she gave it to 

him originally. Hence, we have a contradiction. The problem stems from the 

fact that the watch ages, according to its own time. After the watch makes a time 

loop, it therefore cannot be the same watch they started with. However, it must 

be the same watch, if the loop is to be self-consistent.

The jinnee ball scenario could be made self-consistent if the jinnee ball in-

teracts with other objects outside the wormhole, gaining energy from them in 

such a way as to recreate its initial internal state (i.e., its state when it exited the 

mouth in the past). This might happen if the ball collides with other balls or 

interacts with some external energy source. Lossev and Novikov call this a “Jin-

nee of the fi rst kind,”2 where matter travels along a time loop. They suggested 

that the complexity of the “jinnee” that emerges from the time machine may 

2. A. Lossev and I. Novikov, “The Jinn of the Time Machine: Non-Trivial Self-Consistent Solu-

tions,” Classical and Quantum Gravity 9 (1992): 2315.
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be determined by the amount of external energy available to it. The more com-

plicated the object, the more energy is required to recreate its initial state. If 

we place a large source of energy outside a wormhole time machine, we might 

see all sorts of complex objects emerge. (In principle, this includes people! 

Shades of I Dream of Jeannie!) However, for a truly self-consistent scenario, the 

internal state of the ball would need to be reproduced in every detail, that is, 

the microstate and not just the macrostate of the ball (e.g., the temperature). 

Perhaps the greater the complexity of the jinnee, the lower is the probability of 

its appearance. If so, then the most likely jinnee objects would be elementary 

particles.

In the same paper, Lossev and Novikov presented a very inventive example of 

an “information jinnee” (that they call a “Jinnee of the second kind”3), which is 

3. Ibid., 2316.

old spacecraft

robotic manufacturing plant
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old spacecraft

in museum
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fig. 10.1. Lossev and Novikov’s “clever spacecraft.”
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illustrated in fi gure 10.1. Suppose we know that there is a wormhole time ma-

chine somewhere in the galaxy, but we don’t know its exact location. We build 

an automated spaceship manufacturing plant on earth and provide it with nec-

essary raw materials. Then we turn the plant on, withdraw, and simply wait, 

letting events take their course. (This allows us to avoid the question of free 

will in this scenario.) From one region of the sky, a very old spacecraft appears 

from one of the wormhole mouths (mouth A in the fi gure) and eventually lands 

on a prepared platform attached to the manufacturing plant. Once there, it 

dumps its computer core memory into the manufacturing plant’s computer.

The memory core contains the specifi cations for building the spacecraft, as 

well as the record of its journey, including the locations of the two mouths of 

the wormhole time machine. From this information, a new spacecraft is built 

and programmed with the information from the old spacecraft’s memory core. 

The new spacecraft is then automatically launched toward the other mouth of 

the wormhole, mouth B, whose location was contained in the previous mem-

ory core. The old spacecraft is subsequently put on display in a museum.

Note that all we have done is simply to set up an automatic manufacturing 

plant and provided it with raw materials. What we get in return is the location 

of a wormhole time machine, the design of a spacecraft, and a very old space-

craft! Lossev and Novikov emphasize that it is information that makes the time 

loop. The old spacecraft ends its life in a museum, so it does not travel along 

a time loop.

Of course, we don’t know if any wormholes exist. Assuming that there is at 

least one such wormhole in our galaxy, we have no way of reliably calculating 

the probability per year of such an information loop occurring. This probability 

might be very small or even zero, or it could be very large. We feel that it should 

be very small, since we are uncomfortable with the idea of information appear-

ing from nowhere, but we have no entirely satisfactory way of proving this. The 

fact that a scenario is consistent is not a guarantee that it will actually occur. It 

is equally consistent that nothing happens. When more than one consistent 

solution is possible, it is not clear how to calculate their relative probabilities.

Wormhole Time Machines and Consistency Paradoxes Revisited

In another 1992 paper, Novikov considered several situations in addition to 

those discussed in chapter 9, which involved potential consistency paradoxes. 

As in the case discussed earlier, discovered by the group at Caltech, he showed 

that consistent solutions could be found. For example, let us suppose that the 
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billiard ball in the example from chapter 9 contains a bomb that will go off  

and destroy the ball if it is hit by another object. One will then have an incon-

sistency if the ball goes through the wormhole and comes back and strikes 

itself even a glancing blow, since the ball will then blow itself to pieces before 

it can enter the wormhole. Thus, our previous consistent solution has been 

eliminated. But as Novikov points out, there is still a possible consistent solu-

tion. Imagine the ball blows up, producing a rain of fragments that go off  in all 

directions. Some fragments will enter the wormhole at mouth B in fi gure 9.8 

and will emerge at an earlier time from mouth A. It is easy to show that some 

of the emerging fragments will have the right velocity to hit the incident ball 

at the moment it explodes and cause the explosion. The explosion is thus its 

own cause so that we have a self-consistent causal loop and again no paradox 

arises.

We know that it is possible, then, to fi nd special cases of consistent back-

ward time travel, but we want to know if all backward time travel can be made 

consistent. We will see that, if one has a time machine, it is possible to set up 

situations where a paradox is inevitable. In these situations it appears impos-

sible, contrary to Novikov’s conjecture, to fi nd a self-consistent solution and 

avoid the paradox. If any such situations do exist, then either we must fi nd a 

way to deal with paradoxes, or we must conclude that the laws of physics do 

not allow the construction of a time machine.4

One situation where a paradox is inevitable was presented in a paper by 

Allen titled “Time Travel Paradoxes, Path Integrals, and the Many Worlds In-

terpretation of Quantum Mechanics,” published in Physical Review in 2004. Let 

us go back to fi gure 9.8. A billiard ball enters mouth  B of the wormhole at 

5:00 p.m. and reemerges from mouth A an hour earlier. But now let us add 

a gate through which the billiard ball must pass at 4:30 p.m. in order to get 

to mouth B (the gate is not shown in the fi gure). We assume that the gate is 

initially open so that the billiard ball can pass through, enter mouth B, and 

emerge from mouth A at 4:00 p.m. However, we will put a detector, say a pho-

toelectric cell, at mouth A that detects emerging billiard balls. When the ball 

emerges, the detector emits a radio signal to a receiver at the gate, which then 

causes the gate to close. The radio signal, traveling at the speed of light, ar-

rives at the gate before the ball, so the billiard ball fi nds the gate closed and 

4. An interesting example of a (not self-consistent) time travel paradox is presented in the short 

story “As Never Was,” by P. Schuyler Miller (in Adventures in Time and Space, edited by Raymond J. 

Healy and J. Francis McComas [New York: Del Rey, 1980]).
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thus never reaches mouth B of the wormhole. But if it never reached mouth B, 

it could never have emerged from mouth A. Therefore, we have an inconsistent 

causal loop in which the billiard ball emerges from the wormhole if—and only 

if—it does not emerge.

In this scenario, the gate is either open or closed. There is not a range of 

possibilities as in the collision of the billiard ball with itself, where the colli-

sion can range from head on to barely glancing. These possibilities allowed 

Kip Thorne and his colleagues to fi nd a self-consistent solution in the case of 

the billiard ball that emerged from the wormhole and collided with itself.

However, one has to be careful to be sure that there are really no consistent 

solutions. In fact, as was pointed out to Allen by the anonymous referee who 

reviewed the paper on its initial submission for publication, there is a range of 

possibilities that allows one to fi nd a consistent solution. Suppose the ball ar-

rives at the gate just as the gate is closing and manages to squeeze through but 

is slowed down by an amount that can be anything, depending on just when 

the ball arrives in the small time interval in which the gate is closing. It is then 

possible for the ball to be slowed down just enough so that it arrives at mouth 

B at 5:30 p.m. rather than 5:00 p.m. It will then emerge from mouth A and be 

detected one hour earlier, at 4:30 p.m., causing a signal to be sent to close the 

gate just in time for the incident ball to arrive at the gate and be slowed down 

as it squeezes through.

However, it turned out to be possible to eliminate the loophole allowing 

consistency by tweaking the initial setup, as is done in the published version of 

the paper. In the following discussion, the terms “younger” and “older” refer 

to time as measured by a clock riding on the billiard ball. Refer to fi gure 10.2. 

Let us turn the billiard ball detector at mouth A off  at 4:20 p.m., 10 minutes 

before the younger ball reaches the gate (fi gure 10.2a). Now suppose the older 

ball emerges from mouth A at 4:30 p.m. The gate is not closed, since the de-

tector was turned off  10 minutes prior to the ball’s emergence from mouth  A 

(fi gure 10.2b).

Therefore the younger ball would have passed through the gate and arrived 

at mouth B at 5:00 p.m. It would have then traveled one hour into the past, 

emerging from mouth A at 4:00 p.m. instead of 4:30 p.m., while the billiard 

ball detector was still on, thus causing the gate to close (fi gure 10.2c). The 

younger ball will fi nd the gate closed and never reach the wormhole, in which 

case the gate would not have been closed in the fi rst place. Therefore, after the 

tweaking, one does have a situation where there is an inconsistent causal loop. 
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Our paradox has been restored, and we have thus found a system for which 

Novikov’s self-consistency hypothesis does not hold.

So it appears that, once one has built a time machine, one can fi nd per-

fectly sensible setups in which a grandfather paradox is unavoidable. One 

might think it is pointless to even consider the possibility of backward time 

travel. Conservation of energy says that no process in which the total amount 

of energy in the universe increases (or decreases) can ever occur. As far as 

we know, no future civilization, no matter how advanced, will ever be able to 
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fig. 10.2a–c. Everett’s example of a billiard ball collision scenario with no self-

consistent solution.
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create  energy. Perhaps the same thing is true of traveling backward in time. 

Stephen Hawking, among others, believes this idea, which he refers to as the 

“chronology protection conjecture” (discussed in chapter 12), to be true. On 

the other hand, as discussed in chapter 9, what we know of general relativity 

and quantum mechanics seems to at least leave open the door to the possibility 

of creating wormholes and, thus, time machines.

If backward time travel is possible, there are two general approaches that 

could allow one to avoid paradoxes. Each of these is illustrated in numerous 

works of science fi ction, but one or the other, at least, must turn out to have a 

basis in the actual laws of physics, if it turns out that those laws allow one to 

build a time machine.

Banana Peels

The fi rst of these possibilities is that the laws of physics are such that whenever 

you go to pull the trigger to kill your grandfather something always happens 

to prevent it—you slip on a banana peel, for example (we like to call this the 

“banana peel mechanism”). You can’t kill your grandfather because you didn’t. 

Events that have already occurred cannot be undone. Something will prevent 

your doing it in your future, after you step out of the time machine, because 

something did, in fact, prevent your doing it in what is, for the rest of the 

world, history. A time traveler can be a part of history when he visits the past, 

but he cannot change that history. He will necessarily do what he has already 

done, no matter how he tries to avoid it. An excellent fi ctional illustration of 

this scheme is Robert Heinlein’s classic story By His Bootstraps, which is, in our 

opinion, one of the best time travel stories ever written. A time traveler goes 

forward in time through a wormhole, decides it was a mistake, and returns 

to his room through the wormhole in the opposite direction to prevent his 

initial entry. A struggle ensues in which he inadvertently knocks himself into 

the wormhole. Other nice examples from television and movie science fi ction 

that we recommend are the Twilight Zone episode “No Time Like the Past,” and 

Terry Gilliam’s fi lm 12 Monkeys.

The banana peel mechanism amounts to a slightly revised version of 

Novikov’s consistency hypothesis. It allows the existence of systems that 

would be perfectly reasonable in the absence of a time machine, and that 

would lead to a paradox if a time machine were present. But the banana peel 

mechanism guarantees that if you try to construct such a system with a time 

machine included, the system you wind up with will necessarily include some 
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sort of unexpected “banana peel” that will avoid the paradox. How might this 

apply to our system of a billiard ball with a gate, a wormhole, a billiard ball 

detector, and a signal transmitter? We might fi nd, for example, that when the 

ball emerges from mouth A, the transmitter that is supposed to send a message 

and close the gate, thus creating the paradox, develops an unexpected glitch. 

(Or perhaps the ball may slip on an unexpected banana peel and never enter 

the wormhole.)

The banana peel mechanism leads to a theory that is, logically, perfectly 

consistent. It is somewhat (or very?) unappealing, however, because it’s hard 

to understand how the laws of physics can always ensure the presence of a 

suitable banana peel. There is a troubling fact related to this approach. It turns 

out that, if one wants to preserve the experimentally verifi ed laws of quantum 

mechanics, the construction of a time machine in the remote future can af-

fect the probabilities of things happening in the present. For example, the fact 

that someone is going to build a time machine next week may mean that the 

probability of your being able to build a properly functioning radio transmit-

ter today (or perhaps of eating your lunch without dropping a banana peel) is, 

unexpectedly, very low. On the other hand, if no one builds the time machine, 

the probability that your radio transmitter will function properly and you will 

throw your banana peel in the garbage can is very high.

Parallel Worlds

The second general approach to paradox-free backward time travel makes use 

of the idea of parallel worlds. According to this idea, there are two diff erent 

“parallel” worlds, one in which you are born and enter the time machine, and 

the other in which you emerge from the time machine and kill your grandfa-

ther. There is no logical contradiction in the fact that you simultaneously kill 

and do not kill your grandfather, because the two mutually exclusive events 

happen in diff erent worlds that have no knowledge of one another. Like the 

banana peel mechanism, the idea of parallel worlds is also illustrated in many 

science fi ction works on the theme of time travel. A good example, though one 

unfortunately out of print at the moment, is the excellent novel Branch Point 

by Mona Clee. Another is The Time Ships by Stephen Baxter. This is a sequel to 

Wells’s The Time Machine, and the writing style is deliberately—and quite con-

vincingly—a copy of Wells’s own.

You could hardly be criticized for saying, “I see that such a theory is logically 

consistent, but surely the idea of parallel worlds is so outlandish that it should 
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be confi ned to the world of science fi ction.” Surprisingly, however, there is an 

intellectually respectable idea in physics called the “many worlds interpreta-

tion of quantum mechanics,” fi rst introduced in a paper in Reviews of Modern 

Physics back in 1957 by Hugh Everett. According to Hugh Everett, there are not 

only two parallel worlds but infi nitely many of them that, moreover, multiply 

continuously like rabbits.5

To understand how this works, we need to talk a little about quantum me-

chanics. It is a theory that can predict only the probabilities of the various pos-

sible outcomes of an experiment. It never tells you with certainty what will 

happen. The probabilities are obtained from what is called the wave function 

of the object, and the equations of quantum mechanics (with which we will not 

have to concern ourselves) determine how an object’s wave function evolves in 

time in diff erent physical situations.

Everything we know tells us that quantum mechanics is the physical theory 

that governs the behavior of all systems, large or small. In the case of macro-

scopic, (i.e., ordinary, everyday-sized objects) quantum mechanics tells us that 

the objects behave with essentially complete certainty, as they are predicted 

to do by classical (Newtonian) mechanics. Hence, we can usually forget the 

complications of quantum theory in dealing with everyday objects and simply 

use Newton’s laws of motion, which we know empirically work very well for 

such objects. However, when we deal with atomic- or subatomic-sized objects, 

we must use quantum mechanics if we wish to get predictions that agree with 

experimental observation.

Let’s consider, for example, an electron. In addition to having a position 

and a velocity, it may also be thought of as rotating, or spinning, about some 

axis, like a curveball thrown by a pitcher. According to the rules of quantum 

mechanics, the electron’s speed of rotation can have only one possible value, 

unlike the baseball’s. (The speed of rotation, like many other observable quan-

tities is said to be “quantized,” i.e., to have only certain possible values. This is 

why the theory is called “quantum mechanics.”) The only two possibilities for 

the spinning electron are that its spin may be clockwise or counterclockwise. 

Suppose that when we fi rst see the electron, it is in a state where its wave func-

tion tells us that a measurement of its spin direction will yield clockwise or 

counterclockwise with probability 2 / 3 or 1 / 3, respectively. Let us now put the 

electron through what is called a Stern-Gerlach apparatus, which measures the 

5. The July 2007 issue of the highly respected journal Nature contains several articles, many 

reasonably nontechnical, discussing current views of Hugh Everett’s work.
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spin direction. Picture the apparatus as having a gauge on it with a needle that 

initially points to 0. After the measurement, the needle points to 1 if the spin 

is clockwise and to 2 if it is counterclockwise. Suppose we proceed to make 

such a measurement and we see the needle point to 1 as it would 2 / 3 of the 

time in this situation. In the conventional, or “Copenhagen,” interpretation of 

quantum mechanics, immediately after the measurement the wave function 

will have changed to one that describes an electron that has probability 1 of 

clockwise spin and probability 0 of counterclockwise spin. We will fi nd our-

selves looking at a gauge whose needle points to 1 in a universe containing an 

electron spinning clockwise.

In the Copenhagen approach, the microscopic object being measured (the 

electron) is treated as a quantum mechanical system described by a wave func-

tion. However, the large measuring apparatus is regarded as a classical system 

whose behavior can be adequately described by classical Newtonian physics. 

In practice this works very well, and there is no diffi  culty in distinguishing 

which part of the system we are looking at; it is the measuring apparatus that 

we will treat classically. As a matter of principle, however, there is no really 

satisfying way of making this separation. Physicists tend to be satisfi ed as long 

as we have a theory that works, in the sense of allowing us to make physical 

predictions that agree with experiment. We tend to leave such matters of prin-

ciple to philosophers of science to worry about. In his 1957 paper, however, 

Hugh Everett argued that, in a really correct version of quantum mechanics, 

the experimental apparatus should be treated quantum mechanically in the 

same way as the object being studied. To do this, he developed what is now 

called “the many worlds interpretation” of quantum mechanics.

In the many worlds interpretation, when a measurement is made, the fol-

lowing occurs: After measuring the electron spin, the measuring apparatus, 

including the observers looking at it, are in two diff erent states. With a prob-

ability of 2 / 3, you will fi nd yourself in a state (or “world”) with a gauge whose 

needle points at 1 and an electron spinning clockwise. But there will be a sec-

ond “world” with observers looking at a gauge whose needle points at 2 and 

where the electron is spinning counterclockwise, and you will have one chance 

in three of ending up in that world.

More generally, in the many worlds interpretation, whenever a measure-

ment is made, the universe branches so that there is a separate world for each 

of the possible outcomes of the experiment (often there will be many more 

than two) allowed by the rules of quantum mechanics. In each world the mea-

suring apparatus will indicate one of the possible outcomes of the experiment, 
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and the measured quantity will have the corresponding value. There will be a 

copy of the observer in each world who will be looking at the gauge and seeing 

it have the reading corresponding to that particular world. Our colleague Larry 

Ford likes to say that the good news about the many worlds interpretation is 

that you always win the lottery. The bad news is that the probability of winding 

up in a particular world is equal to the probability, as calculated from quantum 

mechanics, of obtaining the corresponding result when the measurement is 

made. Hence, the probability of being the lucky “you” who winds up in the 

world where you win the lottery is just the usual probability of winning the lot-

tery. So don’t pack your bags for that ’round-the-world trip just yet.

Notice that what we are talking about is called the many worlds interpretation 

of quantum mechanics, not the many worlds theory. That is, in the absence of 

a time machine, the Copenhagen and many worlds interpretations—at least 

in the view of a majority of physicists—lead to identical experimental predic-

tions. In both cases, the probability of obtaining a particular result when you 

make some measurement is obtained from the same mathematical calculation, 

which is prescribed by the rules of quantum mechanics. It is thus not possible 

to decide between them (as one does between confl icting theories) by test-

ing them experimentally, because in the absence of a time machine they make 

the same experimental predictions. It is the interpretation, or way of picturing 

what is going on, that diff ers.

According to the Copenhagen interpretation, you calculate the probabil-

ity that, in some given situation, an observable quantity has a certain defi nite 

value, as indicated by the measuring apparatus. In the many worlds interpreta-

tion, the observed quantity doesn’t have a unique value after the measurement. 

Instead you are calculating the probability of fi nding yourself in the particular 

state or “world” where the measured quantity, as shown by the measuring ap-

paratus, has a certain value. There are, however, other worlds in which other 

copies of “you” fi nd themselves, in which the measurement has a diff erent out-

come. Whichever way you picture it, you wind up with the same  probability—

that predicted by the rules of quantum mechanics—for observing a given value 

for the quantity you are measuring.

Since you can’t decide on the basis of experiment which interpretation is 

right, it is basically a matter of taste which one you choose to adopt. For this 

reason, one might say that few papers have been the subject of more lunch 

table conversation among physicists than that on the many worlds interpreta-

tion. Most physicists probably prefer the Copenhagen interpretation, which 
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is the one we almost always teach our students in their introductory quantum 

mechanics courses. This avoids the complication of multiple parallel worlds. 

However, on an intellectual basis, the case can be made that the many worlds 

interpretation is more internally consistent. In any event, most physicists 

would agree, perhaps grudgingly, that if you want to adopt the many worlds 

interpretation, you’re at liberty to do so. (Many, however, feel that the necessity 

of introducing an infi nite number of parallel universes just to explain what an 

electron does is far too much metaphysical baggage.)

Note, however, that the preceding discussion assumes that you can’t build 

a time machine. This assumption, of course, may well be correct. However, 

we are interested in exploring whether it, in fact, may be possible to build time 

machines. David Deutsch of Oxford University pointed out in a 1991 Physical 

Review article that if the many worlds interpretation is correct (Deutsch is con-

vinced that it is), an interesting possibility exists. In the case of the grandfather 

paradox, a time-traveling assassin would discover that he had also arrived in a 

diff erent Everett “world.” Therefore, no paradox would arise when he carried 

out the dastardly deed.6

According to the many worlds interpretation, once you are in a particular 

world, you are unaware of the existence of the other worlds. Remember our 

thought experiment above—you’re either in a world where the needle points 

to 1 or to 2. In the former, the electron will be spinning clockwise after the 

6. Actually, there is one complication we haven’t discussed. The full explanation of this is 

quite technical, and we can only give a brief overview. It turns out that Deutsch’s idea requires a 

signifi cant modifi cation of the rules of quantum mechanics in the presence of a time machine. 

Instead of describing systems by wave functions, as in standard quantum mechanics, they must be 

described in terms of what are called “density matrices.” These are actually part of the machinery 

of ordinary quantum mechanics, but there they are used to describe the probable average behavior 

of a large set of identical systems which do not aff ect each other. If Deutsch’s approach is adopted, 

one must use a density matrix to describe the behavior of a single system. If one attempts to use 

a wave function, one fi nds that it undergoes a sudden change—a jump in its value—as one goes 

through a wormhole. This is discussed in Allen’s 2004 Physical Review article referred to above. 

Such discontinuous jumps are unphysical, and in quantum mechanics, such behavior of the wave 

function indicates that the system being described has infi nite energy.

The question as to whether nature is willing to bend the well-established rules of quantum 

mechanics in order to allow Professor Deutsch’s scheme for backward time travel is a question 

that can’t be answered unless we have a time machine so we can do the required experiments. The 

usual rules of quantum mechanics are very well-established. However, they have never been tested 

in the presence of a time machine, and one must be cautious about extrapolating physical laws to 

new situations in which they have not yet been verifi ed.
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measurement. You will be unaware of a world where it is spinning counter-

clockwise. In that world there will be another copy of “you” who sees the nee-

dle of the gauge pointing to 2.

You might ask yourself, “Couldn’t I just push the needle on the gauge from 1 

to 2 and thus fi nd myself in the other world?” The situation is much more com-

plicated than this. The measuring apparatus is a macroscopic device. To de-

scribe its state completely, you need to specify not only where the needle points 

but also its internal coordinates, which are the coordinates of each of the huge 

numbers of atoms and molecules of which it is composed. So to turn the state 

of the measuring apparatus in one of the two Everett “worlds” into the state in 

the other would require readjusting every one of this fantastically large num-

ber of coordinates. In other words, not only the macrostates but also all of the 

microstates of the measuring devices in the two diff erent worlds must be the 

same. As a practical matter, the probability of this ever happening as the two 

states of the measuring apparatus evolve over time is so absurdly small as to be 

eff ectively zero. Physicists describe this situation by saying the quantum states 

of the measuring apparatus in the two diff erent worlds are “decoherent.”

Now let’s consider the grandfather paradox from the point of view of the 

many worlds theory. We will suppose that we have a time machine in the form 

of a wormhole like that in fi gure 9.8, except that now mouth B will be in the 

year 2260 and mouth A will be in 2200, so the external time diff erence between 

the two wormhole mouths is much larger than before. Remember, this doesn’t 

have any connection to the internal length of the wormhole. Therefore, we 

will still assume that, according to your own watch, very little time elapses 

for you, the time traveler, between entering mouth B and emerging sixty years 

earlier from mouth A. Imagine that, for some strange reason, you go back in 

time to kill your grandfather. In one universe you emerge as an adult from the 

time machine and kill your grandfather. In that universe you will then go on 

living out your life. (This may be a short one if your grandfather lived in an era 

in which capital punishment was prevalent!) In that world you will never be 

born, so you will never exist as a child or young adult, and hence, you will never 

enter the time machine. Observers in that world will be somewhat puzzled, 

because while their records will show that someone emerged from mouth A 

in 2200, they will not see anyone enter mouth B in 2260, since you entered 

the wormhole in the other Everett world. This, however, does not constitute a 

logical contradiction. We do not have the same event both happening and not 

happening in the same world.
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In the second Everett world, history unfolds as it already has and as you 

know of it from your memory or from other records. The past, up to the time 

you entered the time machine, has already happened in this world and cannot 

be changed. You will be born, say in 2230, since in this world no homicidal 

adult version of yourself emerged from the time machine in the past to kill 

your grandfather. You will then live out your life, as it has already occurred, 

and eventually enter mouth B of the wormhole in 2260 and disappear, never to 

be seen again in this world. As before, no logical contradiction occurs in this 

world, although a puzzling phenomenon will be observed. In this case a time 

traveler will be seen to enter mouth B in 2260, but there will be no historical 

record of anyone emerging in this world from mouth A in 2200. Thus, the 

grandfather paradox has been successfully evaded, exactly as in the many sci-

ence fi ction works based on the idea of “parallel worlds.”

Therefore, in the presence of a time machine, the many worlds interpretation 

becomes the many worlds theory. The theory could actually be tested by using 

the time machine to travel backward in time and observing whether you wind 

up in a new world in which things happen diff erently than you remember. For 

example, you might encounter a younger copy of yourself who has not yet en-

tered the time machine. If the theory turns out to be correct, backward time 

travel without paradoxes would be possible if an advanced civilization fi gured 

out how to build a time machine.

Let us briefl y mention the way in which information paradoxes are resolved 

in the many worlds framework. As an example, consider the mathematician’s 

proof paradox, mentioned earlier in the chapter. In the many worlds view, the 

mathematician receives the proof from a time traveler who came from a diff erent 

Everett universe. In the universe where the time traveler originated, the mathema-

tician became famous by doing the work of proving the theorem himself. The 

theorem was then published, copied from a textbook by the time traveler, and 

given to the mathematician in an alternate universe. Therefore, the solution to 

the information paradoxes in the many worlds picture is that the information 

was generated by normal means, but in a diff erent universe from the one in 

which the time traveler ends up!

Allen analyzed the many worlds idea in somewhat greater detail in a 2004 

article in Physical Review, the same journal where Deutsch’s paper originally ap-

peared. We take our time machine to be the wormhole in fi gure 10.2 and again 

replace human time travelers with billiard balls. We use the model discussed 

above, which led to a paradox. (As a reminder, we have a billiard ball that is 
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aimed to pass through an open gate then enter mouth B of the wormhole, and 

emerge from mouth A.) We will refer to this as the “incident ball.” We can 

also call it the younger ball, since it will be younger in terms of the clock car-

ried on the ball itself than it will be if it later goes through the wormhole and 

then travels back in time. We have a detector positioned outside mouth A of 

the wormhole that determines if the billiard ball exits the wormhole, and, if it 

does, sends a radio signal closing the gate so that the ball cannot get to mouth 

B in the fi rst place.

This is a situation rather like that of the spinning electron, in that there 

are two possibilities. At a given moment in time, either a billiard ball emerges 

from mouth A or it does not. We can imagine the ball detector at mouth A has 

a gauge on it, like the gauge on our electron spin measuring apparatus. In 

the present case the needle initially points at 0, but turns to point at 1 if a ball 

emerges from the wormhole. After 4:00 p.m. there will then be two Everett 

worlds. In one, which we will call the 0-world, observers outside the wormhole 

will say that no ball has emerged and the needle still points at 0. In the 0-world, 

since no ball has emerged, no radio signal is sent, the gate remains open, and 

the incident ball reaches mouth B and enters it at 5:00 p.m. This world cor-

responds to that depicted in the right-hand side of fi gure 10.2b (unlike in 

the left-hand side of fi gure 10.2b, in this case, no ball is seen to emerge from 

mouth A). In the other world, the ball emerges from mouth A at 4:00 p.m. and 

is detected, so the needle turns to point at 1 and a radio signal is sent, causing 

the gate to close so that the incident ball never reaches mouth B. We will call 

this the 1-world. This world corresponds to that depicted in fi gure 10.2c. All 

of this is just analogous to our discussion of the grandfather paradox. The ball 

plays your role in our little drama, and the closing of the gate corresponds to 

your murder of your grandfather.

One might raise the following objection to the many worlds approach. As 

we have already said, in the usual situation, once a measurement has been 

made and the branching into diff erent Everett worlds has taken place, those 

worlds know nothing of one another. Due to the phenomenon of decoherence, 

it is impossible to go from one to the other. How then can the billiard ball enter 

the wormhole in the 0-world where the gate is open and wind up in the 1-world 

where its appearance has caused the needle to point to 1 and the gate to close? 

The point is that it takes a small, but nonzero, amount of time for the detector 

to recognize that a ball has emerged and for the needle to turn from 0 to 1. At 

the instant the ball fi rst emerges, it has not yet been detected and the needle 

still points at 0 in each of the two Everett worlds. This is the key point. Because 
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it has traveled back in time, the ball starts to emerge slightly before the mea-

surement is completed. In physicist’s terminology, the two worlds are not yet 

decoherent. It is the measurement that causes the sudden branching of the two 

worlds. At that point, the measuring apparatus recognizes the appearance of 

the ball in one of the two worlds, and it is naturally in that world that the needle 

turns to point to 1, and the gate is closed. Thus, once the measurement has 

been made and the two worlds have branched, the ball, which entered mouth 

B and then emerged from mouth A of the wormhole in the 0-world, winds up 

in the world where the needle points to 1. This is exactly the cross connec-

tion between the two Everett worlds that Deutsch envisioned. It is possible 

because the ball, having traveled backward in time, emerges from mouth A of 

the wormhole slightly before the sudden change in the internal state of the de-

tector that occurs when the emerging ball is observed. It is this sudden change 

that connects the 0-world to the 1-world.

Let’s see how all this looks to diff erent observers. First, what about exter-

nal observers in the 0-world? They see the incident ball enter the wormhole at 

mouth B. As far as they are concerned, the ball disappears. No ball emerges 

from mouth A in this world. The ball is actually not lost but has gone back 

in time and emerged in the 1-world. Observers in the 0-world, however, will 

know nothing of this.

Now let’s consider what is seen by observers in the 1-world. Observers in 

this world see a billiard ball emerge from mouth A at 4:00. As a result, the 

gate closes, and the incident ball is stopped before it reaches mouth B. Thus, 

external observers in this world will see no ball enter mouth B. Hence, in the 

1-world, observers will see a ball appear, seemingly for no reason, out of 

mouth A. The ball has actually come from the 0-world, but observers in the 

1-world know nothing of this.

In the preceding paragraphs, we have described the situation as seen by 

external observers, that is, those outside the wormhole. Let’s also look at 

things from the point of view of a hypothetical time-traveling intelligent bug, 

equipped with his own watch, riding on the billiard ball. At 4:00 p.m. on the 

bug’s watch, a branching occurs, and it may wind up in one of two possible 

Everett worlds, each with a 50 / 50 chance. In the fi rst one, the bug on the in-

cident ball sees no ball emerge from the wormhole at 4:00 p.m., so the needle 

of the dial remains pointing at 0, and the gate remains open. This is the copy 

of the bug that fi nds himself in the 0-world. Unhindered, it reaches mouth B 

of the wormhole at 5:00 p.m., as shown on both its watch and the external 

clocks. The bug enters the wormhole, and emerges from mouth A shortly after 
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5:00 p.m. on its watch and 4:00 p.m. on the external clocks, since it has  traveled 

one hour back in external time in the brief length of his own time it has taken 

him to traverse the wormhole. As it emerges, it hears a click as the detector 

records his presence and sees the reading of the dial change from 0 to 1. It has, 

in fact, now entered the 1-world, although it feels no sudden change.

Next, the bug notices the gate close and at 4:30 p.m. sees it stop another 

ball, thus preventing it from reaching mouth B. The other ball has a bug on it 

that looks very much like itself. However, it has no recollection of ever hitting 

that gate, which was open when it passed it. But if it should exchange conver-

sation with the other bug, they would discover that their lifetime experiences 

up until 4:00 p.m. were the same. The 1-world thus contains two copies of the 

bug. The younger one (in terms of its own time) is the copy of the bug in the 

1-world that was initially riding toward mouth B when the two worlds branched 

at 4:00 p.m. external time. The other is the older (by an hour), according to its 

own watch. This is the copy of the bug that we have been following up until 

now. It entered the 1-world after traveling back in time through the wormhole. 

After encountering its younger self, the older bug then goes off  into the future 

on some trajectory we haven’t specifi ed.

The second possibility for our bug is that at 4:00 p.m., as he is heading 

toward the gate and mouth B, he sees another ball emerge from the wormhole 

at mouth A. The needle then changes from 0 to 1. It then sees the gate across 

his path close so that the bug bumps into it at 4:30 p.m., and, let us say, comes 

to a stop. It then watches the other ball, whose passenger looks very much 

like a slightly older version of itself, go off  on some other trajectory. Again, if 

it exchanges notes with the other bug he will discover that they lived identical 

lives up until 4:00 p.m.

Thus, in each of the two worlds, each bug—or it would be more accurate to 

say each of the two Everett copies of the single initial, pre-4:00 p.m. bug—sees 

events unfold in a perfectly consistent way. There are no paradoxical contradic-

tions. There is the strange occurrence of encountering itself. However, this is 

not paradoxical, that is, it involves no logical contradiction. The possibility of 

such an occurrence seems inherent in the idea of backward time travel should 

that actually be possible.

From what we have said so far, it seems that Deutsch’s idea of invoking the 

many worlds interpretation of quantum mechanics does provide a consistent 

theory of backward time travel. It also avoids the necessity of seemingly highly 

improbable occurrences that are the result of the only other such theory, the 

banana peel mechanism.



Banana Peels and Parallel Worlds > 155

“Slicing and Dicing”

The theory as we have presented it until now works very well for indivisible, 

point-like objects. We believe the electron and various other elementary par-

ticles to be examples of such objects. However, we’ve been ignoring one com-

plication: as discussed in Allen’s paper, it appears that, in the many worlds 

theory, backward time travel may be exceedingly hazardous to one’s health. 

Macroscopic objects, such as people or billiard balls, have many individual 

constituents, the atoms or molecules of which they are composed. Thus, in 

principle, they are capable of being broken up into smaller pieces. Such ob-

jects take a defi nite interval of time to exit the wormhole or any other time 

machine. The front of the billiard ball exits the wormhole before (in terms of 

external time) its back end does. In the case of a billiard ball the time it takes 

to exit is just given by the diameter of the ball divided by the speed at which it 

is moving.

The problem is that, in general, one can build a detector that is sensitive 

enough to detect the presence of the ball before it has emerged completely. 

Suppose the time it takes the detector to notice that a billiard ball has appeared 

is less than the time it takes for the billiard ball to emerge completely from the 

wormhole. Let’s say, for example, that the ball is detected when only slightly 

more than half of it has emerged. Let us also assume that this detector’s sen-

sitivity is such that it will not trigger at all unless slightly more than half of a 

ball emerges. Then the two Everett worlds we have discussed, the one in which 

the ball appears out of the wormhole and the one in which it doesn’t, will split 

before the back end of the billiard ball exits the wormhole.

How does this aff ect our previous discussion? For the fi rst half of the bil-

liard ball, nothing is changed. It emerges from the wormhole when the needle 

points at 0 (before the two Everett worlds have branched), is detected, and nat-

urally winds up in the 1-world. But when the rear half of the ball emerges, the 

branching between the two worlds has already occurred. The world in which 

the rear half emerges, and where the needle points to 0, has lost contact with 

the 1-world. The two worlds have now become decoherent, and transition be-

tween them is impossible. Thus, we have the 1-world containing only half of 

the ball. In that world the gate has closed, preventing the incident ball from 

reaching mouth B. However, that world will not contain the second half of the 

ball, which reached mouth A after the two worlds had branched. It has been left 

behind in the 0-world. Recall that the second half is actually slightly less than 

half the ball and is not therefore enough to trigger the detector. Therefore, in 
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the 0-world, the second half of the ball will emerge from the wormhole, but the 

detector will not be triggered. In this world, the needle will remain pointing 

to 0, the gate will remain open, and the younger version of the ball will reach 

the gate at mouth B and go through the wormhole and be split in two. The fi rst 

half of the billiard ball will wind up in one of the two worlds, the 1-world, and 

the second half in the other.

In fact, the problem is even more serious. The more sensitive the detection 

device, the worse the problem becomes. Say we increase the “size sensitivity” 

of our detector so that it can detect a sliver corresponding to one-fi ftieth of a 

billiard ball emerging from mouth A. Let us also modify it so that, when it de-

tects an emerging sliver, not only does the needle turn to point to 1, but the de-

vice also records the time when it made the observation. One would now fi nd 

50 diff erent Everett worlds in which a billiard ball sliver had been detected. 

They would be diff erent worlds, because observers in each one of them would 

see a diff erent time reading on the dial. In each of them the gate would have 

been closed as a result of the detection of an emerging sliver, so that the inci-

dent billiard ball will not reach the gate at mouth B of the wormhole in any of 

these worlds. Moreover, each of these worlds will contain only a single sliver 

of the incident ball.

Thus, if we use a suffi  ciently sensitive detector, the billiard ball (or for that 

matter, a person, a spaceship, or anything else traveling back in time through 

the wormhole) will emerge in a large number of small pieces, each appearing 

in a corresponding number of Everett worlds.

You might say to yourself, “Well, maybe I can’t personally survive a trip back 

in time through a wormhole to take the money in my 401(k) out of the stock 

market just before the next time Wall Street decides to do something especially 

stupid and set off  a fi nancial crisis. However, I can accomplish the same re-

sult by sending myself a warning message backward in time.” Unfortunately, 

however, this strategy runs into the same problem we have just been talking 

about.

You can model a message containing information as a series of Morse code 

dots and dashes. If Deutsch is correct, you can send yourself a message con-

taining a single dot. This would be analogous to sending a single electron 

through the wormhole. However, a message consisting of a single dot doesn’t 

convey much information, particularly since it would be hard to pick your dot 

out of the random background static that is always present. To convey infor-

mation would require a message containing a number of dots and dashes. But 

one would expect such a structured message to have the same problem as an 
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extended material object; the various characters in the message would end up 

in diff erent Everett worlds. Hence, you would wind up with access to only a 

single lonesome and uninformative dot that happened to wind up in your par-

ticular “world.”

Deutsch’s idea that the many worlds interpretation of quantum mechan-

ics allows one to avoid the paradoxes of backward time travel provides a very 

clever way of implementing the “parallel universe” idea of science fi ction in a 

physical context. We are always assuming that the engineering problems of 

building a time machine have been solved by some advanced civilization (dis-

cussion of these problems is provided in chapters 11 and 12). At fi rst sight, 

the many worlds theory may appear to avoid the paradoxes associated with 

backward time travel. Unfortunately, as we have seen, it seems to imply that 

only elementary objects, such as electrons, can survive a trip through a time 

machine intact. More complicated systems, including human beings, appear 

to be dissociated into their more elementary constituents in passing through a 

time machine. This must be true, since the individual constituents are “sliced 

and diced” into diff erent Everett worlds if a sensitive detector is used to ob-

serve the system as it emerges from the time machine. Therefore, we seem to 

be left with the conclusion that backward time travel by macroscopic systems, 

for example, people or spaceships, will be possible only through the banana 

peel mechanism. This means that the laws of physics imply that such time 

travelers will necessarily encounter a liberal sprinkling of (fi guratively speak-

ing) banana peels lying in their path, even though this may seem the result of 

highly improbable coincidences.
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11
 “Don’t Be So Negative”

Exotic Matter

When your gravity fails, and negativity just

don’t pull ya through . . . 

bob dyl an, “Just Like Tom Thumb’s Blues”

You’ve got to accentuate the positive, 

eliminate the negative.

johnny mercer, “Ac-Cent-Tchu-Ate the Positive”

Negative Energy

We saw in chapter 9 that all of the various 

mechanisms for time travel and faster-

than-light travel involve the use of exotic matter. So what is this stuff ? Exotic 

matter, in the sense that the term is used in this area of physics, is mass/energy 

that violates the so-called weak energy condition. This condition states that 

all observers in spacetime must see the local energy density (the energy per 

unit volume) to be nonnegative. It is a “local” condition in that it is required to 

hold true at each point in spacetime. All observed types of matter and energy in 

classical (i.e., nonquantum) physics obey this condition. The reason for pos-

tulating such energy conditions in relativity was discussed in chapter 9. Let us 

briefl y summarize the main points.

Given a distribution of physically reasonable matter and energy, one can, 

in principle, solve Einstein’s equations of general relativity to fi nd the geom-

etry of spacetime that arises from this matter and energy. The problem is that 

Einstein’s equations, by themselves, do not tell us what constitutes “physically 

reasonable” matter or energy. Without some additional assumptions, you can 
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go the other way. Write down any spacetime geometry that has the properties 

you want, and from that work backward to fi nd the distribution of matter and 

energy you need to generate that geometry. If that was really all there was to 

it, then Einstein’s equations would have no predictive power at all. Since any 

geometry is produced by some distribution of matter and energy, you can get 

anything you like by this procedure. Energy conditions were introduced in rela-

tivity as conditions that observable matter and energy seem to obey, which also 

allow physicists to prove some very powerful mathematical results in general 

relativity. These include the famous “singularity theorems” of Roger Penrose 

and Stephen Hawking, which prove the existence of singularities inside of 

black holes and at the beginning of our universe.

“Negative energy” would be energy (or matter) that violates the weak en-

ergy condition. We will henceforth use the terms negative energy and exotic matter in-

terchangeably. Let us begin by immediately clearing up a common misconcep-

tion. Given our discussion in chapter 9, and particularly if you are a Star Trek 

fan, you might think that by exotic matter we mean “antimatter.” In Star Trek, 

the starship Enterprise’s warp drive is supposedly powered by matter-antimat-

ter reactions. In chapter 9, we told you that exotic matter was required for the 

Alcubierre warp drive. Ergo, exotic matter must be antimatter, right? WRONG! 

Let us say—defi nitively—that exotic matter is not antimatter. When a particle 

and its antiparticle (e.g., an electron and a positron) collide, the result is a 

shower of gamma rays, which have positive energy density. The positron has a 

charge opposite that of the electron, but both have positive mass. Therefore, 

when they annihilate the result is positive, not negative, energy. So, Star Trek 

notwithstanding, matter-antimatter reactions will not give us the type of en-

ergy needed for warp drive.

When we use the terms “exotic matter” or “negative energy,” we also don’t 

think of it in terms of classical particles with “negative mass.” Suppose for a mo-

ment that you could have “negative-mass baseballs.” How would they behave? 

If such objects could exist, the world would be a very strange place indeed. 

Particles with positive mass are gravitationally attractive; particles with nega-

tive mass would be gravitationally repulsive. Since particles with positive mass 

fall down in the earth’s gravitational fi eld, one might think that negative-mass 

particles should fall up. But that would seem to allow, contrary to what we 

have seen so far, the possibility of locally distinguishing between gravity and 

acceleration.

Suppose that we have two rocket ships, one accelerating at a constant rate 

of 1g in empty space and the other at rest on the surface of the earth. In each 
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rocket ship we have two particles, one with positive mass and one with nega-

tive mass. In each rocket ship both particles are released. What will an observer 

inside each rocket see? In the accelerating rocket, the two particles are released 

and, as seen by an outside observer, the fl oor accelerates up to meet them. An 

observer inside the rocket will see both particles “fall” downward to the fl oor of 

the rocket at the same rate, that is, with an acceleration of 1g. For the rocket on 

the surface of the earth, when the particles are released, the positive-mass par-

ticle will fall downward and, according to our reasoning above, the negative-

mass particle should “fall” upward. But that means the two observers inside the 

rocket will see diff erent situations, even though, according to the principle of 

equivalence, they should see the same thing. Would a negative-mass particle 

really fall upward in the earth’s gravitational fi eld? (This is one that has gener-

ated a bit of confusion even for some famous physicists.)

Let’s examine the situation more carefully. We will denote the mass of the 

positive-mass particle m, and that of the negative-mass particle –m (where we 

assume that m > 0). The scenario described above contains a hidden assump-

tion. In drawing our conclusion, we implicitly assumed for the negative-mass 

particle that, although its gravitational mass was negative, its inertial mass was 

positive. Let us instead assume that the principle of equivalence holds for the 

negative-mass as well, including for the sign of the mass. That is, if the gravita-

tional mass of a particle is negative, then so is its inertial mass. Then, as we will 

show, the seemingly paradoxical situation described above can be resolved.

Using Newton’s law of gravitation, we can determine the direction of the 

earth’s gravitational force on each particle. Recall that the law of gravitation is

F = –
GmM

r2

,

where M here is assumed to be the mass of the earth, G is Newton’s gravita-

tional constant, and r is the distance of the particle from (the center of ) the 

earth. For the positive-mass particle, the force is just given by the equation 

above; the minus sign indicates that the direction of the force is downward. 

For the negative-mass particle we have F = –G(–m)M / r2 = +GmM / r2; the plus 

sign indicates that the sign of the gravitational force is upward. But to fi nd 

the direction of the acceleration of the particle we have to use Newton’s sec-

ond law of motion: F = ma. For the positive-mass particle, we have F = +ma, 

and F = –GmM / r  2. Setting these two expressions equal and canceling the 

m’s, we get a = –GM / r  2, so the direction of the acceleration is downward, as 

we would expect. This is because, for a positive-mass particle, the acceleration 
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is in the same direction as the force. For the negative-mass particle, we have 

F = –ma (since the mass of the particle is –m), and F = +GmM / r2. Setting the two 

expressions for F equal and cancelling the m’s yields a = –GM / r2, so in fact the 

negative-mass particle also accelerates downward! This is because, for the nega-

tive-mass particle, even though the force is directed upward, the force and the 

acceleration are oppositely directed, unlike for the positive-mass particle where 

they are in the same direction. So therefore one cannot use negative-mass par-

ticles to locally distinguish between gravity and acceleration.

Suppose that we had a negative-mass planet of mass –M instead, and we 

release a small positive-mass particle near it. What would happen? The gravi-

tational force between the two is repulsive (F = +GmM / r2). So the direction of 

the gravitational force on the positive mass is upward. For a positive mass, 

the force and the acceleration are in the same direction(F = +ma). Therefore, 

the positive mass would be repelled from the negative-mass planet. A small 

negative-mass particle released near the planet would feel a gravitational force 

directed toward the planet. This is because in this case we have F = –GmM / r2, 

since the two minus signs in front of the masses cancel each other out. How-

ever, since for the negative-mass particle, force and acceleration are oppositely 

directed (F = –ma), the negative-mass particle would also accelerate away from 

the planet!

Now let’s look at a more unusual situation. Consider a positive- and a 

negative-mass particle, with masses m and –m, respectively, out in space far 

from all other gravitating bodies. If the two particles are released from rest 

what will they do? This situation is shown in fi gure 11.1. The negative-mass 
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fig. 11.1. Positive and negative masses. The negative mass will chase the 

positive mass!
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particle is labeled 1, and F1 is the force particle 1 experiences due to particle 2; 

similarly, a1 is the acceleration experienced by particle 1. The same conventions 

apply for particle 2. (The positive direction of force and acceleration is taken to 

be to the right in the diagram.)

Figure 11.1 shows that the positive-mass particle is repelled by the nega-

tive-mass particle and accelerates away from it. The negative-mass particle is 

also repelled from the positive-mass particle, but because for it the force and 

the acceleration are oppositely directed, it accelerates toward the positive-mass 

particle. The net result is that the two particles chase each other, while main-

taining a constant distance from one another, with ever-increasing speed! In 

fact, the same thing would happen in the case of the positive-mass particle sus-

pended above the negative-mass planet discussed above. There the repulsive 

downward force on the planet would cause the planet to accelerate upward. 

But, because of the large mass of the planet and Newton’s second law in the 

form a = F / m, the acceleration of the planet would be too small to notice.

Now at fi rst sight, this would seem to be a fl agrant violation of the laws of 

conservation of energy and momentum. In this context, the law of conserva-

tion of energy would say that the kinetic energy (energy of motion) + potential 

energy (energy of position) of the two-particle system remains constant, since 

the particles constitute an isolated system. Similarly the law of conservation of 

momentum would say that the sum of the mass times the velocity (speed and 

direction) for the two particles remains constant. The kinetic energy (in New-

tonian physics) of a particle is KE = 1

2
mv2 , where v is the speed of the mass m. 

The momentum of a particle is its mass times its velocity, p = mv, where, in this 

equation, the direction of motion must also be taken into account. So the law of 

conservation of energy for our two-particle system reads:

total kinetic energy =KE1 + KE2= 
1

2
(−m)v2 + 1

2
mv2 = 0.

(Here we have ignored the potential energy, since the potential energy of each 

particle remains constant because their relative positions remain constant.) 

Similarly the law of conservation of momentum would be:

total momentum = p1 + p2 = (–m)v + mv = 0.

So here we have a very peculiar situation where the laws of conservation of 

energy and momentum are obeyed—in fact, the total kinetic energy and to-

tal momentum of the system are both zero—yet the two particles chase each 

other with ever-increasing speeds! One cannot help the feeling that there is 

still something wrong with this scenario, since it seems to be an example of a 
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“free lunch,” one that we don’t see occurring in the real world. In passing, we 

note that if someone threw a negative-mass baseball at you, because the force 

and acceleration are oppositely directed, you would have to hit it in the direc-

tion it was moving in order to stop it!1 As far as we know, all particles in our 

world have positive mass.

We now turn to the concept of negative energy as described by the laws of 

quantum mechanics. One of the most amazing discoveries of twentieth-cen-

tury physics is that what we normally consider empty space, the “vacuum,” is 

not really empty at all! The laws of quantum mechanics have taught us that 

the vacuum can be described as a roiling sea of “virtual particles,” or, “vacuum 

fl uctuations”: particles that appear out of and disappear back into the vacuum 

so rapidly that they cannot be directly measured. This modern picture of the 

vacuum is a consequence of the “energy-time uncertainty principle” proposed 

by Werner Heisenberg in the early 1920s. To measure the energy of a system 

to within a certain accuracy ΔE, takes a certain amount of time; call this time 

interval ΔT. To probe ever-smaller regions of space requires measurements 

of ever-shorter duration, that is, ever-smaller values of ΔT. However, accord-

ing to the energy-time uncertainty principle, the shorter the time duration of 

our measurement, the larger the uncertainty in the energy of the system being 

measured. The product of the two can never be smaller than a certain universal 

constant of nature, that is, ΔE ΔT ≥ h̄, where h̄ is Planck’s constant divided by 

2π. Planck’s constant, named after Max Planck, one of the founders of quan-

tum mechanics at the turn of the twentieth century, is a universal constant of 

nature like the speed of light. It governs the scale of the very small, much like 

the speed of light determines the scale of the very fast. Planck’s constant is a 

very small number, when expressed in terms of ordinary “everyday” units such 

as kilograms, meters, and seconds. This is why we don’t notice quantum ef-

fects on the everyday scale of things. As a result of the energy-time uncertainty 

principle, if one is measuring the energy contained in a region of space over 

a very short timescale, the uncertainty in the energy measurement will be very 

large. This uncertainty makes it possible for particles to appear and disappear 

from the vacuum over this timescale without being directly observed.

We said that virtual particles, or vacuum fl uctuations, occur so rapidly that 

they cannot be directly detected. Well, you say, I thought physics deals with 

1. For a more extensive discussion of negative mass in classical physics, see the delightful 

article by Richard Price, “Negative Mass Can Be Positively Amusing,” American Journal of Physics 61 

(1993): 216–17.
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things you can measure! Yes it does. It turns out that the indirect eff ects of vac-

uum fl uctuations are measurable. An example is the Lamb shift in the spectrum 

of hydrogen (named after Willis Lamb, who was the fi rst to measure it). The 

“spectral lines” (specifi c wavelengths of light given off  by atoms, which are 

unique to individual chemical elements) are slightly shifted from where they 

were expected to be. This diff erence in the position of the lines can be shown 

to be due to vacuum fl uctuations.

We shall discuss several examples of negative energy in quantum physics. 

The fi rst is the “Casimir eff ect,” discovered by Hendrik Casimir in 1948. He 

predicted that two uncharged parallel metal plates, when placed close together, 

would experience an attractive force due to vacuum fl uctuations. This force 

has been measured on several occasions, with the most recent measurements 

agreeing with Casimir’s prediction to within a few percent. From the expres-

sion for the force, one can calculate the energy density between the plates. 

 Remarkably—and very germane to our purposes—this energy density turns out 

to be negative. That is, the energy density between the plates is lower than that of 

the vacuum when the plates are not present. The energy density varies as –1 / d4, 

where d is the distance between the plates, which means that the amount of 

negative energy increases the closer the plates are together. Although the force 

between the plates has been measured, the energy density is far too small to 

measure directly. We see that to get a large negative energy in the Casimir ef-

fect, it has to be confi ned to a very thin region between the plates.

A second eff ect is the “evaporation” of black holes, predicted by Stephen 

Hawking in 1975. Hawking showed that when quantum fi eld theory (i.e., the 

laws of quantum mechanics applied to fi elds) was applied to black holes, it 

predicted that particles and radiation could “leak out” of the hole, reducing 

its mass in the process. There are a number of ways to think of this process. 

One is that the presence of the black hole disturbs the vacuum around it, caus-

ing a fl ow of negative energy into the hole, which pays for the positive-energy 

“Hawking radiation” that a distant observer sees by decreasing the mass of 

the black hole. The rate of radiation depends on the inverse fourth power of 

the mass of the hole. As a result, this eff ect is very tiny for stellar mass black 

holes. However, it is possible that there could exist “mini” black holes, with 

about the mass of a mountain and the size of an elementary particle, which 

might have formed in the very dense early universe. For such mini-holes, the 

rate of Hawking radiation is very large, causing them to explode violently. Even 

though Hawking radiation has not been observed (yet), and although the eff ect 

is tiny for black holes that we are likely to encounter, Hawking’s work is of pro-

found importance. His result made the laws of black hole physics consistent 
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with the laws of thermodynamics and has deep implications for three areas of 

physics: general relativity, quantum theory, and thermodynamics. And nega-

tive energy plays a crucial role in making this possible.

A third illustrative example of negative energy in quantum theory is the 

class of quantum states known as “squeezed states” of light. In a classical 

electromagnetic wave, the electric (or magnetic) fi eld is well-defi ned at each 

point in time and space. But in quantum mechanics, because of the quantum 

fl uctuations mandated by the uncertainty principle, the fi eld can only be ap-

proximately localized in space and time. For example, draw a sinusoidal curve 

on a piece of paper. This might represent a classical electric fi eld that is vary-

ing with time at some point in space. The quantum electric fi eld has random 

fl uctuations as a function of time superimposed on the regular classical time 

variation and so would be depicted as a blurry sinusoidal curve, compared to 

the sharp curve for the classical electric fi eld.

However, one can “cheat” the uncertainty principle in the sense that one 

can decrease the fl uctuations in one characteristic of the wave, say, the phase, 

below the uncertainty principle limit while increasing them in another feature, 

say, the amplitude. (The amplitude measures the height of the wave crests, and 

we can think of the phase as determining when, along the time axis, the wave 

crests occur. More precisely, the phase determines the value of the electric fi eld 

at t = 0. Two waves whose wave crests occur at diff erent times are said to be 

“out of phase.”) This is illustrated in fi gure 11.2. Of course, one is not really 

time

increase in 
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amplitude uncertainty

reduction

in  phase

uncertainty

squeezed light

fig. 11.2. Squeezed light. The uncertainty in the phase 

(“position”) of the light wave is reduced at the expense 

of increasing the uncertainty in its amplitude (height of 

wave crests).
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circumventing the uncertainty principle, but rather, “redistributing” the quan-

tum fl uctuations from one variable to another.

The vacuum state is classically the state with no electric fi eld, but the quan-

tum vacuum has fl uctuations in it and is therefore “smeared out” around the 

zero value for the electric fi eld. One can also “squeeze” the quantum vacuum 

to create a so-called squeezed vacuum state. As a simple analogy, think of the 

quantum vacuum as a long water balloon (that should really have a somewhat 

“fuzzy,” i.e., ill-defi ned surface, like our blurry quantum electric fi eld wave 

discussed earlier). The creation of a squeezed vacuum state is analogous to 

squeezing the water balloon at various places along its length. At those places, 

the squeezing makes the balloon thinner at the expense of making it thicker 

elsewhere along its length. Squeezing the quantum vacuum decreases the 

vacuum fl uctuations at some places and increases them in others. Squeezed 

vacuum states are now routinely produced in quantum optics labs and have 

technological applications that range from the reduction of noise in gravita-

tional wave detectors to the creation of more effi  cient quantum information 

processing algorithms.

For our purposes, squeezed vacuum states are interesting because they are 

states that involve negative energy. Figure 11.3 shows a sketch of the energy 

density in a squeezed vacuum state as a function of time. We see that there 

are periodic “pockets” of negative energy density surrounded by regions of 

(larger) positive energy density. Although these states have been produced in 

energy density

time0

energy density in a squeezed vacuum state

fig. 11.3. Energy density in a squeezed vacuum state. A squeezed vac-

uum state has oscillating regions of positive and negative energy. Note 

that the positive regions are always larger than the negative regions.
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the laboratory, as in the case of the Casimir eff ect, the negative energy density 

in these states is far too small to directly measure.

In the 1960s, Epstein, Glaser, and Jaff e proved mathematically that any 

quantum fi eld theory contains quantum states for which the energy density 

can be negative at a point. Their argument was later generalized to show that 

one could also fi nd states where the energy density is arbitrarily negative at a 

point. So quantum fi eld theory inherently allows violations of the weak energy 

condition.

So we have seen that quantum theory forces us to take the idea of negative 

energy seriously. On the other hand, if the laws of physics place no constraints 

on negative energy, all sorts of things might become possible. Some of these 

include wormholes and warp drives, time machines, violations of the second 

law of thermodynamics (e.g., refrigerators without power sources), and the 

destruction of black holes. These might be good or bad, depending on one’s 

point of view.

Averaged Energy Conditions

In the case of the energy conditions, theoretical physicists realized that if these 

constraints are true, then one could prove some very powerful results, such as 

the existence of the big bang in which our universe began and the formation 

of singularities at the centers of black holes. It also happened that these con-

ditions, in addition to appearing very reasonable, were also actually satisfi ed 

experimentally by classical forms of matter and energy. However, it was then 

later realized that quantum matter and energy could violate all of the known 

energy conditions. What to do?

As physicists, we essentially play a game with nature. We make guesses—

hypotheses—about how we think the world behaves. These guesses can be 

motivated by a variety of reasons. One might be, “Gee, wouldn’t it be neat if 

the world was really like this?” Or, “If this is true, then I can prove that a num-

ber of these other very interesting things must also be true.” Sometimes the 

motivation goes the opposite way: “If this is true, the world would be com-

pletely crazy, and things would be happening that we don’t actually observe.” 

In cases like the latter, we are motivated to try to understand the reason why 

the world doesn’t behave in this or that crazy way. The ultimate arbiter of our 

guesses must be confrontation with the real world, that is, observation and 

experiment. Theoretical physicists build simplifi ed models of the world that 

they hope capture its central features but that are tractable enough to make 
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predictions. The experimental physicists check how successful or unsuccess-

ful the theorists have been.

Given the important role energy conditions play in a variety of areas in rela-

tivity, it is imperative to see whether there are weaker constraints on negative 

energy than the energy conditions, which we know are violated. It may be that 

one can fi nd such conditions that allow you to preserve your previous results, 

but that real fi elds don’t obey even those weaker restrictions. The argument of 

a theoretical physicist would go something like this: (1) “Show that if condi-

tion A is true, then we can prove that statement B is true”; (2) “Is there any 

reason to believe that condition A is actually satisfi ed in the real world?” As 

for the energy conditions, we think: “What other weaker assumptions would 

allow us to prove some of the same results, and yet at the same time might 

have a chance of being true?” The usual conditions are violated at a point in 

spacetime, but one never really measures something at a single point in spacet-

ime. Measurements are made over regions of space and take some minimum 

amount of time. With this in mind, one possibility is that, while quantum fi eld 

theory allows energy conditions to be locally violated (e.g., at a point or in a 

limited region), it could be that a suitable average of the energy density, say, 

over an observer’s worldline, is always nonnegative. “Averaged energy conditions” 

were fi rst introduced by Frank Tipler (now at Tulane University) in the 1970s. 

He showed that many of the known results in general relativity could be proven 

using these weaker conditions.

Various forms of an averaged weak energy condition were proposed by a 

number of people, fi rst by Greg Galloway at the University of Miami, and also 

by Arvind Borde at Long Island University, and by Tom. This type of condition 

averages the energy density along the worldline of a geodesic (i.e., freely fall-

ing) observer. Such a condition, if true, would say that, although an observer 

might encounter negative energy at some point along his worldline, he would 

also have to see a compensating amount of positive energy either before or 

afterwards. A related, although independent, condition that has played a very 

important role in this area of research is the “averaged null energy condition.” 

Loosely speaking, it is like the averaged weak energy condition, except that the 

average is taken over a null or lightlike geodesic. This condition will play an 

important role in our discussions. John Friedman (at the University of Wis-

consin–Milwaukee), together with Kristen Schleich and Don Witt (both at the 

University of British Columbia) proved the so-called topological censorship 

theorem, which shows quite generally that the maintenance of traversable 

wormholes generically requires violations of the averaged null energy condi-
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tion. As we will see later, Stephen Hawking showed that violations of this con-

dition are also required to build time machines in fi nite regions of spacetime.

Although the averaged weak and null energy conditions are satisfi ed over 

a large range of circumstances, they are known to be violated in others. The 

averaged weak energy condition holds in fl at spacetime when there are no 

boundaries (e.g., like Casimir plates). The averaged null energy condition 

holds in fl at spacetimes and has been recently shown to hold even in fl at spa-

cetimes with boundaries. However, both conditions, as currently formulated, 

fail in some curved spacetimes. One problem is that even if such conditions 

were true, it would still leave a lot of wiggle room for creating mischief with 

negative energy. For example, suppose an observer’s worldline initially takes 

him through a region of negative energy. The averaged weak energy condi-

tion would say that he must subsequently encounter a region of compensating 

positive energy, but it does not specify any time frame for when that positive en-

ergy must arrive. Suppose the positive energy does not arrive for, say, 25 years. 

That’s 25 years during which time the observer could conceivably manipulate 

the negative energy to produce large eff ects, for example, to violate the second 

law of thermodynamics.

Quantum Inequalities

There has been a parallel—and closely related—line of research to the study of 

averaged energy conditions. Again, the idea is to see whether there are restric-

tions on negative energy density over an extended region, such as an observer’s 

worldline, as opposed to at a single point.2 Such constraints, if they exist, 

might allow the violations of the energy conditions that we know of but still 

be strong enough to prevent all hell from breaking loose. This program was 

initiated by Larry Ford in 1978. He suggested that quantum fi eld theory might 

place bounds on negative energy “fl uxes” (that is, fl ows of energy) and densi-

ties that have a form similar to Heisenberg’s energy-time principle relation, 

but with the inequality sign going in the opposite direction: |ΔE|ΔT ≤ h̄, where 

|ΔE| is the magnitude (i.e., the absolute value) of the negative energy, ΔT is its 

duration, and  h̄ is again Planck’s constant divided by 2π. Figure 11.4 is meant 

2. The quantum inequalities we discuss here are averages over an observer’s worldline. Very 

recently, Chris Fewster and Calvin Smith (then also at York) have proven some quantum inequali-

ties that hold over volumes of space and time, not just along worldlines. This is an ongoing area 

of research.
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to give a fl avor of the physical implications of such a bound. Consider an ob-

server who initially passes through an amount of negative energy given by 

|ΔE|. The bound says that not only must compensating energy be encountered 

later but that it must be encountered no later than a time ΔT ≤  h̄ / |ΔE| afterward. 

The implication of the constraint is that the larger the magnitude of the initial 

negative energy through which the observer passes, the shorter the time interval 

before the positive energy arrives.

Ford showed that this kind of bound was obeyed by a certain limited class of 

quantum states, and conjectured that it might be true in general. In 1991, Ford 

gave a formal proof that this type of bound held for negative energy fl uxes in 

arbitrary quantum states in certain quantum fi eld theories, an extremely pow-

erful result. In 1995, Ford and Tom generalized his proof to include negative 

energy density. These bounds have since come to be called “quantum inequali-

ties.” In light of their implications for wormholes and warp drives, it is worth 

discussing the (more precise) form of the bounds in a little more detail.

Here we shall discuss the form of quantum inequalities that applies to what 

are called “free fi elds,” such as the electromagnetic fi eld in fl at spacetime. 

These lead to simplifi ed theories in which we ignore the interactions between 

|ΔE|

(+) energy

ΔT ≤ h

|ΔE|

 inertial

observer’s

worldline

(-) energy

fig. 11.4. A depiction of the physical interpretation of 

a quantum inequality.
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fi elds that occur in nature. The general case of “interacting fi eld theories” is 

more diffi  cult to deal with mathematically.

In fl at spacetime (no gravity), suppose that we have a quantum fi eld that has 

a region of negative energy density and an arbitrary inertial (constant velocity) 

observer whose worldline passes through this region. Imagine that the ob-

server has a device that “samples” the energy density over some timescale,t0, 

called the “sampling time.” Mathematically, we represent this process by 

what’s called a “sampling function.” For the purposes of this discussion, just 

think of the sampling function as analogous to a measuring device that takes 

some time to switch on and off , and that does most of its measuring over a 

time t0. We can choose t0 to be anything we like. Let us call the magnitude of 

this “sampled energy density,” |r– |. Then the quantum inequality for energy 

density has the form:

ρ ≤ Ch

c t3 4

0

,

 

where c is the speed of light, and C is a constant, typically much smaller than 

1, but whose numerical value depends on the particular shape of the sampling 

function. The sampling function is required to be “smooth,” that is, no jumps 

or kinks, and generally mathematically well behaved. There are lots of possible 

functions that have this form. Each one might represent a slightly diff erent 

type of measuring device. For example, one sampling function might repre-

sent a device that takes 5 seconds to gradually reach full sensitivity, makes its 

measurement over an average time of 10 seconds, and takes another 5 seconds 

to gradually shut off . Another might represent a diff erent device that reaches 

maximum sensitivity in 1⁄10 second, measures over an average time of 1⁄100 sec-

ond, and shuts off  gradually after an additional 1⁄10 second.

Let’s examine the right-hand side of the quantum inequality. Now, h̄ is a 

very small number in everyday units and appears in the numerator, and c3 is 

a very big number that appears in the denominator, and C is a constant that 

is small, compared to 1. Therefore Ch̄ / c3 is a very small number. In principle 

we can choose the sampling time, t0, to be anything we want. The choice of a 

sampling time that yields a strong bound is a bit like Goldilocks’s selection of 

the best bowl of porridge. If the sampling time is taken to be very short, then 

our sampling function could, for example, be nonzero in the middle of the 

region of negative energy, which might be very negative there but then rapidly 

drops off . So this choice gives us a very weak bound. A sampling time that is 
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too long samples the positive energy as well, and as a result does not probe the 

negative energy optimally. The sampling time that is the same as the duration 

of the negative energy does the best job.

Therefore, to get a strong bound on the negative energy, we want to choose 

t0 to be the time over which the negative energy density lasts. So we see that |r–| ≤ (a 

very small number) / t 0
4. We see that the larger t0 is, that is, the time over which 

the negative energy density lasts, the smaller (in magnitude) the negative en-

ergy density. If we want to go the other way, and make the negative energy 

density very large in magnitude, then the quantum inequality bound says that 

the negative energy cannot last very long.3 If we have regions of negative energy 

and positive energy density that are separated in time, then we might want to 

choose the sampling time to be equal to that time separation. In that case we 

would get a bound on the time it takes for the positive energy to arrive, given 

some initial amount of negative energy, which is more like the case illustrated 

in fi gure 11.4. If we let the sampling time go to zero, then we are “sampling” 

only over a single point, and the energy density can be arbitrarily negative at 

a single point in spacetime, which is consistent with earlier results. If we let 

the sampling time become infi nitely long, then we sample over the observer’s 

entire worldline, and our quantum inequality bound reduces to the averaged 

weak energy condition. So in fl at spacetime, the averaged weak energy condi-

tion follows from the quantum inequality bound.

The power of the quantum inequalities is that they are proven to hold 

for all quantum states and all inertial observers (in fl at spacetime with no 

 boundaries—the Casimir eff ect will be discussed separately). This includes 

the squeezed vacuum states discussed earlier in the chapter. One could get at 

least a hint that this might be true from fi gure 11.3, where the positive energy 

peaks are seen to “outweigh” the negative energy troughs.

Another point is also worth emphasizing. Although the quantum inequali-

ties bear a resemblance to the energy-time uncertainty principle, the latter 

principle was not assumed in their derivation. These are rigorous mathemati-

cal bounds that are derived directly from quantum fi eld theory, and they have 

been derived using several diff erent mathematical methods. Were the quantum 

inequalities found experimentally to be incorrect, then there would be some-

thing deeply wrong with the structure of quantum fi eld theory—a theory that 

has withstood thousands of laboratory tests.

The original quantum inequality bound on energy density derived by Ford 

3. There is no restriction on the maximum amount of positive energy one can have.
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and Tom assumed a specifi c choice of sampling function. A few years later, 

Chris Fewster and Simon Eveson, at the University of York in the United King-

dom, gave a much simpler derivation of the quantum inequalities. In contrast 

to the Ford-Roman analysis, which used a particular sampling function, Fews-

ter and Eveson’s method had the additional bonus of being applicable for arbi-

trary sampling functions (again, assuming the functions are smooth and oth-

erwise mathematically well-behaved).4 Aside from Larry Ford, Chris Fewster, 

together with his students and collaborators, has probably contributed more 

to this fi eld than anyone else. His highly rigorous and powerful mathematical 

techniques have allowed generalizations of the original quantum inequalities, 

including some that hold in curved, as well as fl at, spacetime. Quantum in-

equalities have been proven for fi elds that we know exist in nature, such as 

the electromagnetic fi eld and the quantum fi eld for the electron (the so-called 

Dirac fi eld), as well as for a number of other fi elds that may exist. With one 

exception, however, they have only been proven for free fi eld theories. To sum-

marize all the results on quantum inequalities over the last twenty years would 

require another book.

All Good Physics Is Done with Mirrors

The quantum inequalities do not forbid the existence of negative energy, per 

se; what they highly constrain is the arbitrary separation of negative and positive 

energy. Otherwise, one might imagine taking a beam of radiation containing 

regions of negative and positive energy, somehow splitting off  the positive en-

ergy and directing it to some distant part of the universe, and bringing the 

isolated negative energy back to your lab. Paul Davies proposed just such a 

scenario in his book How to Build a Time Machine (2001). As Davies and Ste-

phen Fulling, then both at King’s College, London, showed theoretically in 

the 1970s, one could produce pulses of positive and negative energy by varying 

4. It should be noted that every sampling function gives a true bound on the energy density, but 

not necessarily the best bound. A poor choice of sampling function may give a very weak bound, 

whereas a more judicious choice might give a much better bound. Both bounds are true, but one 

provides a stronger constraint than the other. For example, let’s say that the amount of money we 

can aff ord to spend on a car in a year is represented by x. If our yearly income is $50,000, then obvi-

ously x ≤ $50,000. Suppose we then determine that the amount which we can set aside per month 

out of our salary, after deducting our other monthly expenses, is a maximum of $1,000. That gives 

us a bound of x ≤ $12,000. Both bounds are true; however, the latter tells us more about the pos-

sible value of x than does the former.
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the acceleration of a moving mirror. In practice, the amount of radiation is ex-

ceedingly small, unless the accelerations involved are enormous. Nevertheless, 

one could consider the following scenario. Produce an initial pulse of negative 

energy, followed by a period of no radiation, and then a subsequent pulse of 

positive energy (there are mirror trajectories that do this). Use a second mirror 

(or set of mirrors) to refl ect the negative energy in one direction. During the 

time separation between the pulses, slightly rotate the second mirror to a new 

position so that when the pulse of positive energy arrives, it gets defl ected off  

at a slightly diff erent angle. Far away from the second mirror, the pulses of 

negative and positive energy will get farther and farther apart. Do this repeat-

edly to obtain a large amount of isolated negative energy, which you can then 

use to build your wormhole, warp drive, time machine, or what have you.

However, consider an inertial observer who is very far away from any of the 

mirrors and whose worldline intersects the negative energy. Since the positive 

energy has been defl ected somewhere else, this observer would encounter only 

negative energy, with no compensating positive energy. But this would vio-

late the quantum inequalities, which hold for all quantum states, however they 

might be produced, and for all inertial observers in fl at spacetime. So this sce-

nario is ruled out by the quantum inequalities. What must presumably happen 

is that in the process of rotating the mirror, positive energy is produced (as we 

just said, moving mirrors can produce as well as refl ect positive and negative 

energy) that compensates the negative energy. The distant observer would then 

have to encounter both negative and compensating positive energy. The same 

would be true if one tried to isolate the pulses by capturing the negative energy 

in a mirrored box. If one tries to close the door of the box before the positive 

energy pulse arrives, the closing door acts like a moving mirror that produces 

compensating positive energy.

As an aside, we mention that in two-dimensional spacetime (one time and 

one space dimension), where the Davies-Fulling analysis was actually per-

formed, there is only one space dimension for the mirror to move in. As a 

result, it turns out that a mirror that emits an initial isolated pulse of negative 

energy must necessarily hit any inertial observer who intercepts the pulse, un-

less it is stopped before collision. The act of stopping the mirror produces an 

(even bigger) pulse of positive energy. One can show that, in the latter case, 

for any inertial observer who intercepts the fi rst pulse, the time interval be-

tween the pulses, ΔT, and the size of the negative energy pulse, : |ΔE|, are 

constrained by the relation : |ΔE|ΔT ≤ h̄. Hence, the larger the initial negative 

energy pulse, the shorter the time interval before the positive energy arrives. 
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(In four dimensions, the problem is much more complicated, and it is diffi  cult 

to get general exact solutions, which is why Davies and Fulling chose to work 

in two-dimensional spacetime. This is an example of the situation mentioned 

in chapter 6, where one may be able to get valuable insight into a complicated 

four-dimensional situation from a two-dimensional “toy” model.

Quantum Interest and the Casimir Effect, Again

Another example of the richness of the quantum inequalities is that they pre-

dict an eff ect known as “quantum interest.” If we consider negative energy to 

be an energy “loan,” then it turns out that nature is a shrewd banker. Not only 

must the loan be “repaid” with positive energy within a certain limited time 

period, as we have already seen, but, as it turns out, the positive energy must 

overcompensate the negative energy. That is, the loan must be “repaid with 

interest.” Furthermore, the amount of overcompensation increases with the 

magnitude and duration of the debt. For example, suppose that we are initially 

given some fi xed amount of negative energy. The longer one staves off  the ar-

rival of the subsequent positive energy, within the time limit set by the quantum 

inequalities, the larger the amount of positive energy must be when it arrives.

Let us return to the case of the Casimir eff ect, which is a counterexample 

to the averaged weak energy condition and the quantum inequalities as dis-

cussed so far, since the negative energy between the plates doesn’t depend on 

time, and therefore can be made to last as long as one likes. However, we also 

saw that the magnitude of the negative energy varies as one over the fourth 

power of the distance between the plates. This means that to get a large nega-

tive energy density it has to be confi ned to a very thin region of space, that is, 

the distance between the plates has to be very small. (Of course, the area of 

the plates can, in principle, be made as large as we like.) However, in prac-

tice there is a limit on how close the plates can realistically get to each other. 

The calculation of the Casimir energy density assumes that we can treat the 

plates as approximately smooth and continuous, that is, we ignore the fact that 

the plates are really made of individual atoms. Once the distance between the 

plates is roughly about the size of the distance between atoms in the plates, 

then this approximation breaks down. At this point we would not expect the 

energy density to be accurately modeled by the Casimir expression. This means 

that we cannot use the Casimir eff ect to generate arbitrarily large negative en-

ergy densities in the lab.

We might ask, is there another way to “beef up” the negative energy between 
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the plates, for example, by changing the quantum state of the fi eld? In other 

words, by changing the quantum state of the fi eld between the plates to one 

diff erent from the usual “Casimir vacuum” state, can one depress the negative 

energy below that of the Casimir vacuum while keeping the distance between 

the plates fi xed? It turns out the answer is no. If we take the diff erence in energy 

density between the Casimir vacuum state and in any other state, we fi nd that 

this diff erence obeys a quantum inequality. The implications of this “diff erence 

inequality” are that one cannot reduce the energy density below that of the 

Casimir vacuum energy density by an arbitrarily large amount for an arbitrarily 

long time. So to make the energy density more negative and static with time, 

one is forced to confi ne the negative energy to a narrower region of space.

On the other hand, Ken Olum and Noah Graham at Middlebury College 

have constructed an example of two interacting fi elds in fl at spacetime, one 

of which models a confi ning region (analogous to the Casimir plates) and the 

other a fi eld confi ned within that region. They found that, as in the Casimir 

eff ect, one could get regions of static negative energy that could be maintained 

as long as one liked. The averaged weak energy condition does not hold in this 

model (nor does it for the Casimir eff ect), because one can always choose to 

average over the worldline of an observer who just sits in the static negative 

energy region forever. Unlike the Casimir case, here it is conceptually a bit 

more diffi  cult to justify a diff erence inequality–type argument, because there is 

not as clean a separation between what constitutes the confi ning wall and what 

constitutes the fi eld being confi ned. It should be mentioned that their model is 

simplifi ed in the sense that it involves only two spatial dimensions instead of 

the usual three. Olum and Graham used that assumption to make the calcula-

tion tractable. However, their result does imply that the quantum inequalities 

do not hold (at least in their original form) for some interacting fi elds.

It should be pointed out that the Olum-Graham example is similar to the 

Casimir eff ect in an important respect. Their model likely has the property that 

the magnitude of the negative energy density and its spatial extent are inversely 

related, that is, large negative energies are confi ned to narrow regions. Fur-

thermore, there is a larger region of positive energy just outside the negative 

energy, so you cannot have isolated negative energy. So their example does not 

show that you can have a lump of negative energy without some positive energy 

close by.5

5. However, since the situation they analyze is the lowest energy state of their system, that state 

is analogous to the Casimir vacuum state. Therefore, if one considers the diff erence in energy 
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Interestingly, Olum and Graham showed that in their model the aver-

aged null energy condition is obeyed. This is because any light ray that passes 

through the region where the energy density is negative must also pass through 

nearby regions of very large positive energy. As a result, the type of energy in 

their model is unlikely to be useful for building wormholes, since violation of 

the averaged null energy condition is a necessary requirement for traversable 

wormholes.

The same is true for the Casimir eff ect. In that case, it turns out (for techni-

cal reasons) that the local null energy condition is obeyed for light rays that 

move between but parallel to the plates. But the condition is violated along 

light rays moving between the plates in the direction perpendicular to them. 

However, for the averaged null energy condition, we have to average over the 

entire path of the light ray, which includes the parts that intersect the plates. 

The positive energy of the plates more than off sets the negative vacuum energy 

between the plates. One dodge we might consider is to drill tiny holes through 

the plates to allow the light ray to pass through without intersecting the plates, 

so that the light ray encounters only the negative energy. Remarkably, as Gra-

ham and Olum showed in a later paper, the contribution to the average due to 

eff ects caused by the presence of edges of the holes in the plates is positive and 

outweighs the contribution from the negative energy between the plates! This 

result has been recently extended to include general types of boundaries, in 

work done by Fewster, Olum, and Mitch Pfenning (a civilian faculty member at 

the United States Military Academy at West Point).

This result is important because it shows that one cannot use the Casimir 

energy to maintain a traversable wormhole. In the original wormhole time ma-

chine model proposed by Morris, Thorne, and Yurtsever, they placed a pair of 

Casimir plates near the wormhole throat and used the Casimir vacuum energy 

to provide the required negative energy to hold the wormhole open. However, 

in this model, for an observer to get through the wormhole, she has to pass 

through the plates. If we imagine cutting holes in the plates to allow her to pass 

through, we ruin the delicate negative energy balance that holds the wormhole 

open (as the results discussed in the previous paragraph show).

Although the original form of the averaged null energy condition can be 

violated in some spacetimes, it seems at least possible that a suitably modifi ed 

version—one that has the same physical implications—holds. These implica-

between that state and any other quantum state of the system, it is quite likely that one could prove 

“diff erence inequalities” for this system as well.
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tions would include no traversable wormholes and no time machines. On the 

one hand, evidence for this is supplied by the work done by Fewster, Olum, and 

Pfenning, as well as more recent work by Olum and Graham.

However, some very new work by Doug Urban (also at Tufts) and Ken Olum 

shows that one can always set up some situations where the averaged null en-

ergy condition is violated. Our aim in mentioning this work is primarily for 

completeness and to point out that this remains an ongoing area of research. 

Suppose you have a lightlike geodesic and along some parts of the geodesic 

there is negative energy. Their proof involves the use of what is mathemati-

cally called a “conformal transformation” along the lightlike geodesic, which 

essentially enhances the magnitude of negative energy regions to the average 

along the geodesic. The technical details are far beyond the scope of our dis-

cussion here. Whether these newly discovered violations of the averaged null 

energy condition are applicable in wormhole and warp drive spacetimes is not 

yet known.

Urban and Olum point out that the various formulations of the averaged null 

energy conditions are all for “test fi elds,” that is, fi elds that are weak enough 

so as to not alter the background spacetime geometry. (Think of the analog of 

a tiny marble rolling on a rubber sheet with a huge bowling ball sitting in the 

middle of the sheet. The marble is a “test particle” in the sense that its contri-

bution to the curvature of the rubber sheet is negligible compared to that of 

the bowling ball. A “test fi eld” is the same idea.) They speculate that a “self-

consistent” averaged null energy condition, that is, one that properly takes into 

account the gravitational eff ects of the test fi eld, might hold. However, this is 

an extremely diffi  cult mathematical problem, and as of this writing we do not 

know the answer (except in very simple cases).

Negative Energy and Classical Fields

In this chapter we have primarily been discussing negative energy in the con-

text of quantum fi elds. All observed classical (nonquantum) fi elds obey the energy 

conditions we discussed earlier. However, there are certain theoretical classical 

fi elds (i.e., they might exist) that show up in other areas of physics such as par-

ticle physics and cosmology, which violate the weak energy condition. One is 

called the nonminimally coupled scalar fi eld (NMCSF). That’s rather a mouth-

ful! (“Yeah, a friend of mine bought one of those, but it broke the fi rst day 

he got it.”) Rather than go into all the technical details about what that name 

means, let us just describe how such a fi eld behaves with regard to negative 

energy, which is, after all, our main purpose here.
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Since the fi eld is classical, it is not immediately subject to the quantum in-

equalities, which are constraints on quantum fi elds. One might then conceiv-

ably use such a fi eld to produce large negative energy fl uxes and densities to 

produce big eff ects. In the late 1990s, Carlos Barcelo and Matt Visser (then 

both at Washington University in St. Louis) showed that such a fi eld could 

in principle violate all the energy conditions. They showed how to construct 

wormholes using a NMCSF as a source of the negative energy required to hold 

the wormhole open. Unfortunately, the required parameters that describe the 

fi eld necessary to achieve this seem to be enormously, some would say unphysi-

cally, large.6 Another rather disturbing feature of their wormholes is that the 

sign of Newton’s gravitational constant could be diff erent in the two external 

regions of space connected by the wormhole. (Barcelo and Visser suggested 

that one might patch up this latter problem by adding some normal matter to 

the mix.) It is also possible, although not proven, that the fi eld parameters that 

they need to assume would lead to violations of the second law of thermody-

namics as applied to black holes.

However, work by Fewster and Lutz Osterbrink (then also at the University 

of York) showed that in fl at spacetime (and in certain classes of curved spa-

cetime), the NMCSF does obey the averaged weak and null energy conditions. 

Furthermore, they showed that the negative energy associated with this clas-

sical fi eld exhibits quantum interest–like phenomena, for example, a nega-

tive energy pulse must be overcompensated by a positive energy pulse. Their 

results also imply that large, long-lasting negative energy is only achievable 

with uncharacteristically (and very possibly, unrealistically) large fi elds. This 

conclusion is consistent with the required fi eld parameters that Barcelo and 

Visser had to assume in the construction of their wormhole models.

Even though this is a section on classical fi elds, we close by mentioning 

some recent results on quantum NMCSFs. In a second paper, Fewster and Os-

terbrink showed that these quantum fi elds do not obey the quantum inequali-

ties, at least in their usual form. If you go back and look at the expression for 

the quantum inequality bound given earlier in the chapter, you notice that the 

right-hand side does not depend on the quantum state of the fi eld. Fewster and 

Osterbrink demonstrated that quantum NMCSFs obey a weaker type of quan-

tum inequality in which the right-hand side does depend on the quantum state. 

The energy density can be made arbitrarily negative over an arbitrarily large 

spacetime region, but only at the cost of an even larger total amount of positive 

6.  More specifi cally, the fi eld must take on trans-Planckian (i.e., beyond the conjectured scale 

of quantum gravity) values.
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energy. Their results indicate that it is still harder to create negative energy than 

positive, and that these diffi  culties increase the larger the energies involved. As 

of this writing, these results are fairly new, and their consequences have yet to 

be fully understood.

We have introduced a lot of new ideas in this chapter. Let us try to sum-

marize, as best we can, the current playing fi eld. The averaged weak energy 

condition holds in fl at spacetime when there are no boundaries. The averaged 

null energy condition holds in fl at spacetimes, and has been recently shown to 

hold even in fl at spacetimes with boundaries. However, it fails in some curved 

spacetimes. On the other hand, it has been conjectured that a suitably modifi ed 

(i.e., “self-consistent”) version of the averaged null energy condition might 

hold in these cases as well.

As we have discussed, quantum inequalities have been proven for several 

known free (noninteracting) fi elds in fl at spacetime, such as the electromag-

netic fi eld and the Dirac (i.e., electron) fi eld, and for some fi elds that may ex-

ist. Recently, some similar bounds have been proven in curved spacetime. The 

quantum inequalities, in their original form, do not hold for the Casimir eff ect 

or for the interacting fi elds example of Olum and Graham. However, in the 

Casimir case (and probably in the Olum-Graham case as well), it is possible 

to defi ne diff erence inequalities. These are bounds on the diff erence in energy 

in the lowest energy state of the system (its “ground state”) and in an arbi-

trary quantum state. A number of quantum diff erence–type inequalities have 

also been proven in curved spacetime. These diff erence inequalities say that 

one cannot arbitrarily depress the negative energy below the negative energy 

ground (i.e., lowest) state of the system.

The Olum-Graham results indicate that the original form of the quantum 

inequalities do not hold for at least some interacting fi elds. The analysis of 

interacting fi elds is mathematically a much more diffi  cult problem than for 

free fi elds. As a result, the state of our knowledge of quantum inequalities with 

regard to interacting fi elds in general is still in its infancy, and is a current 

area of research. For the NMCSF, which might exist in nature, the usual quan-

tum inequalities do not hold, but there are others that do. These other quan-

tum inequality bounds depend on energy scale and become stricter at higher 

energies.

In the following chapter, we will discuss the implications of the quantum 

inequalities for wormholes and warp drives.
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12
 “To Boldly Go . . .”?

Captain, I can’t change the laws of physics.

scot t y, Star Trek

In this chapter, we shall examine the vi-

ability of the various spacetime shortcuts 

discussed in chapter 8. Do the laws of physics limit their behavior or prevent 

their creation? In appendix 6, we also discuss a famous theorem of Hawking 

that proves, given some very reasonable assumptions, that negative energy is 

always required to build a time machine in a fi nite region of spacetime.

Curved versus Flat

From our discussion in the last chapter, it would seem that the most likely 

candidate for the negative energy required for wormholes and warp drives is 

that associated with certain states of quantum fi elds. For such states, the quan-

tum inequalities place very strong constraints on the possible confi gurations 

of wormhole and warp drive geometries. The quantum inequalities for fl at spa-

cetime can be used in curved spacetime as well, provided we limit our sampling 

times to regions of curved spacetime that are small enough to be considered 

fl at over the time of sampling. The curvature of spacetime is described by a 

mathematical quantity called the “Riemann curvature tensor.” (Bernhard Rie-

mann was a famous nineteenth-century mathematician whose work on curved 

space geometry paved the way for Einstein’s theory of general relativity.)

Any smooth curved surface can be considered “locally fl at,” that is, fl at over 

a small enough region. For example, the curvature of the earth is not immedi-

ately noticeable to us because most of the distances we encounter in everyday 

life are small compared to the earth’s radius, its radius of curvature. When we 
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draw a triangle on the fl oor of our laboratory, the sum of the angles add up to 

180°, in accordance with familiar Euclidean geometry. That’s because our labo-

ratory is small compared to the earth’s radius of curvature. By contrast, if we 

drew a very large triangle on the surface of the earth, with two legs made up of 

portions of longitude lines, and the third being a portion of the equator, then 

we would fi nd that the sum of the angles of this triangle add up to more than 

180°. (This feature of triangles is one of the properties of a spherical surface 

that distinguish it from a fl at surface.) For a general sphere, the smaller the 

sphere, the more curved it is. The smaller the radius of curvature, the “more curved” 

the surface, and the smaller is the size of a region that can be considered fl at. For a region 

to be small enough to be considered fl at, its size in every direction must be much smaller 

than the radius of curvature of the sphere.

In the case of four-dimensional curved spacetime, the laws of special relativ-

ity hold over regions that are small enough, in space and time, to be considered 

fl at over the duration of any measurements we make.1 Unlike a sphere, which 

is described by one radius of curvature, a general curved spacetime can have a 

number of diff erent radii of curvature, because there can be curvature in more 

spatial dimensions, as well as in the time dimension. These radii of curvature 

can be determined from the Riemann curvature tensor for the spacetime.

The advantage of the quantum inequalities is that they contain a sampling 

function, whose sampling time we can set to be anything we like. Even though 

the average we take is technically over the entire worldline of an inertial (“geo-

desic,” or, freely falling, in curved spacetime) observer, the only region that 

really contributes signifi cantly to the average is the part of the observer’s 

worldline that is within the sampling time we choose. Thus, we can apply the 

fl at spacetime quantum inequalities in a curved spacetime provided we take the 

sampling time to be much smaller than the smallest radius of curvature of the spacetime. 

(Here, we measure the sampling time in ct units, so that it has units of length.) 

Over that sampled region, the spacetime can be considered fl at and the laws of 

special relativity must apply. The same reasoning holds if the spacetime con-

tains boundaries, for example, mirrored plates (as in the case of the Casimir 

eff ect). Consider a (very tiny) observer who is between a pair of Casimir plates. 

If we choose the observer’s sampling time (again, in ct units) to be small com-

pared to the distance to the plates, as measured in his rest frame, then the 

original quantum inequalities also apply to the Casimir eff ect. If you were to 

1. That is, the region should be small enough for tidal forces to be negligible over the time of 

the measurement.
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replace the phrase “distance to a boundary” with “spatial extent of the nega-

tive energy density,” then the same is likely also to apply to the Olum-Graham 

example referred to in the last chapter.

Wormholes and Quantum Inequalities

In 1996, Ford and Tom applied the fl at spacetime quantum inequalities, using 

the method outlined above, to Morris-Thorne wormhole spacetimes. By choos-

ing the sampling time to be small compared to the smallest radius of curvature 

or the distance to any boundaries, they were able to prove very strong constraints 

on possible wormhole geometries. If the wormhole is macroscopic (e.g., large 

enough for a human being or a spaceship to pass through), there must be 

huge discrepancies in the length scales that describe the wormhole. Otherwise 

the wormhole can be no larger than approximately what is called the “Planck 

length,” which is about 10–33 centimeters. The Planck length characterizes the 

scale below which the presently unknown laws of quantum gravity become im-

portant and the predictions of our present theories become unreliable.

By “length scales that describe the wormhole,” we mean things like the ra-

dius of the throat of the wormhole and the thickness (in the radial direction) 

of the negative energy region near the throat. For typical cases, Ford and Tom 

found that for macroscopic wormholes (i.e., large throat size), the negative 

energy had to be confi ned to an incredibly thin band around the throat. For ex-

ample, one type of wormhole postulated by Morris and Thorne was dubbed the 

“absurdly benign” wormhole. This is because the wormhole geometry was tai-

lored so that an infalling observer would experience no tidal forces. When Ford 

and Tom applied the quantum inequalities to this wormhole, they found that 

for a wormhole with a throat radius of one meter (just about large enough for 

a human being to crawl through), the negative energy had to be concentrated 

in a band around the throat that could be no thicker than about one-millionth 

the size of a proton! (The size of a proton is about 10–13 centimeters, or 1⁄100,000 

the size of an atom.) Matt Visser previously estimated that the amount of exotic 

matter required to hold open a meter-sized wormhole is about the equivalent 

of the mass of the planet Jupiter, but negative in sign (i.e., “minus” the mass 

of Jupiter). In terms of energy, using E = mc2, this is equivalent to about the to-

tal amount of energy produced by ten billion stars in one year, but negative in 

sign. So it appears that to maintain a wormhole you could just crawl through, 

you would need minus the mass of Jupiter, confi ned to a region no thicker than 

a millionth of a proton radius. The situation does not improve very much if we 
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consider larger wormholes of this type. A wormhole with a throat radius of 

one light-year would still be required to have its negative energy confi ned to a 

region whose thickness is less than a proton radius.

In other research conducted around the same time, Brett Taylor, Bill His-

cock (both then at Montana State University), and Paul Anderson (at Wake 

Forest University) analyzed the matter/energy profi les for several quantized 

fi elds to see if they would be compatible sources for supporting traversable 

wormholes. In all the wormhole models that they examined, they found that 

the matter and energy associated with these fi elds did not have the properties 

required for maintenance of the wormhole geometry.

Recall that in chapter 9, we mentioned Visser’s “cubical” wormholes, which 

had the negative energy confi ned to the edges of a cube so that an observer 

could pass through the wormhole without encountering the exotic matter. If 

the edges of the cube were extremely thin, such a confi guration might satisfy 

the quantum inequality bounds. One type of object predicted by various theo-

ries of particle physics and cosmology, and which may well exist in the real uni-

verse, is known as a “cosmic string.” This is an immensely dense, but incredibly 

thin, object of great length. A cosmic string is so dense that a few kilometers of 

it would weigh as much as several times the mass of the earth. Although cosmic 

strings have negative pressure, they obey the weak energy condition and don’t 

have negative energy density. Thus they are not exotic matter in the sense used 

here.2 To support a Visser cubical wormhole, one would need something like 

a negative energy density cosmic string. However, all the theories known that 

predict cosmic strings allow only strings with positive energy density.

Another issue we have not yet dealt with is how one acquires a wormhole in 

the fi rst place. Starting with fl at spacetime, one would have to “punch a hole” 

in it to make a wormhole. Nobody has the remotest idea how to do that, or if 

it is even possible. The theories of quantum gravity currently on the market all 

suggest some sort of “granularity” of space at the smallest levels (i.e., on the 

size of the Planck length). The late physicist John Wheeler suggested that one 

possibility is that space on these scales might be analogous to the foam on 

an ocean wave. Seen from high above, in an airplane, the ocean surface looks 

smooth and serene. If we look on much smaller scales, for example, the scale 

of a single ocean wave seen just above a wave crest, we see the much more 

2. It should be pointed out that the contrary, incorrect statement is made in the popular book 

Black Holes, Wormholes, and Time Machines, by Jim Al-Khalili (London: Institute of Physics Publish-

ing, 1999), 214, 227.
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complicated substructure of bubbles, froth, and foam. Wheeler dubbed this 

picture of space on the smallest scales “spacetime foam.” Morris and Thorne 

suggested that perhaps an arbitrarily advanced civilization might be able to 

pull a submicroscopic wormhole out of the spacetime foam and enlarge it to 

traversable size. Of course, no one has any idea how to do that, either. Some 

years ago, Tom toyed with the idea of whether the rapid expansion of the early 

universe, “infl ation,” might naturally enlarge such a tiny wormhole to macro-

scopic size. The conclusion was that, for a variety of reasons, this did not seem 

to be a very plausible mechanism.

In 2003, Matt Visser, Sayan Kar (at the Indian Institute of Technology), and 

Naresh Dadhich (at the Inter-University Centre for Astronomy and Astrophys-

ics in India) suggested that it might be possible to make wormholes with ar-

bitrarily small amounts of exotic matter. To reach their conclusion, they did 

not assume anything about the source of the exotic matter. If one assumes that 

the source is the negative energy associated with a quantum fi eld, then one can 

apply the quantum inequalities to these wormholes as well. This was subse-

quently done by Fewster and Tom, using a somewhat more powerful form of 

quantum inequality. They found that the Visser-Kar-Dahich (VKD) wormholes 

also run afoul of the quantum inequalities, and that VKD wormholes of mac-

roscopic size are either ruled out or are severely constrained. This is similar to 

the earlier conclusion of Ford and Tom. Alternatively, one could assume that 

the source of the exotic matter is a classical nonminimally coupled scalar fi eld, 

as in the earlier Barcelo-Visser wormholes, but we saw that those wormholes 

required enormously large values of the fi eld parameters.

Warp Drives and Quantum Inequalities

After the fi rst application of quantum inequalities to wormholes, Mitch Pfen-

ning and Larry Ford performed a similar analysis for the Alcubierre warp drive 

spacetime, assuming a quantum fi eld source for the required negative energy. 

They found that the constraints on warp bubbles are even more stringent than 

the ones for wormholes. It turns out that the thickness of the bubble wall is 

restricted by the relation

wall thickness ≤ 102
v

b

c
L

Planck
,

where vb is the speed of the warp bubble, c is the speed of light, and Lplanck = 10–33 

centimeters is the Planck length. So unless the speed of the bubble is enor-

mously larger than the speed of light, the bubble wall thickness cannot be much 
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larger than the Planck length. In considering the total amount of negative en-

ergy required, Pfenning and Ford calculated that, for a bubble radius of about 

100 meters (large enough to fi t a spaceship in), the total magnitude of negative 

energy, |E|, required was given by

|E| ≥ 3 × 1020 Mgalaxy vb,

where Mgalaxy is the mass of our entire galaxy.3 So for a 100-meter warp bubble, 

you need (minus) the mass of about 1020 galaxies, which is about 10 powers of 

10 (i.e., 10 orders of magnitude) larger than the total mass of the entire visible 

universe!

Allen and Tom did a similar analysis for the Krasnikov tube and found that 

the situation was even worse there. We found that to make even a laboratory-

size Krasnikov tube (1 meter long and 1 meter wide) would require an amount 

of negative energy with a magnitude of about 1016 galaxy masses. To build a 

tube that stretched from here to the nearest star would require about (minus) 

1032 galaxy masses. The constraints on the maximum thickness of the tube 

walls are comparable to that found for warp bubbles.

Van Den Broeck’s “Ship in a Bottle”

Chris Van Den Broeck (then at the Katholieke Universitat Leuven in Belgium) 

proposed an ingenious idea to dramatically reduce the amount of negative en-

ergy required for a warp bubble, to (only!) a few times the mass of the sun. 

We call this the “ship in a bottle” approach. We can visualize this in the fol-

lowing type of rubber sheet diagram. Imagine an infl ated balloon, seamlessly 

attached to a fl at sheet by a narrow tube or neck. The outer radius of the neck 

represents the radius of the warp bubble. Draw a spaceship on the bottom 

of the (two-dimensional) surface of the infl ated balloon. (Remember that in 

these diagrams, the rubber sheet itself represents space. The regions inside and 

outside the sheet have no physical meaning, and are only there to allow us to 

visualize the curvature of the sheet.) In Van Den Broeck’s model, the outer 

radius of the warp bubble is only about 3 × 10–15 meters, about the size of a 

proton. However, as one proceeds into the bubble, the interior of the bubble 

opens out into a large macroscopic “pocket” of curved space with a fl at region 

near the center, where the spaceship is placed. This region is connected to the 

warp bubble by a narrow throat.

3. The mass of our galaxy is roughly about a hundred billion times the mass of the sun.
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Van Den Broeck’s modifi ed geometry for the warp drive reduces the total 

negative energy requirements down to a few times the mass of the sun, com-

pared to 1020 galaxy masses. However, the problem of large negative energy 

densities, implied by the quantum inequalities, remains. That is, the thickness 

of the warp bubble walls is limited by the same restrictions as in Alcubierre’s 

original model to be no thicker than a few Planck lengths. Also, it is unclear 

how one could warp space enough to put the ship in the “bottle” in the fi rst 

place—let alone how to “unwarp” space to get it out! And one still has the 

problem, present in the original model, of the inability to steer the bubble from 

the inside. Pierre Gravel and Jean-Luc Plante, at the Collège Militaire Royal du 

Canada, subsequently performed an analogous modifi cation of the Krasnikov 

tube, modeled after Van Den Broeck’s paper on the Alcubierre warp drive, with 

similar results.

More Trouble for Warp Drives

Francisco Lobo, of the Centro de Astonomia e Astrofísica da Universidade de 

Lisboa in Portugal, and Matt Visser performed a detailed analysis of the Alcu-

bierre and Natário warp drives. They did not assume anything about the source 

of the exotic matter, that is, whether it was quantum or classical in nature, so 

their results are quite general. Lobo and Visser pointed out that the weak en-

ergy condition violation persists for arbitrarily low bubble speeds. This means 

that the need for exotic matter is not just associated with superluminal veloci-

ties. It seems to be related to the fact that these warp drive mechanisms are 

examples of “reactionless drives,” which appear in science fi ction.

What does this mean? All propulsion systems, such as conventional rock-

ets, work on the principle of Newton’s third law of action and reaction (which 

is the law of conservation of momentum). This law states that for every action 

force there is an equal and opposite reaction force. (The action and reaction 

forces act on diff erent bodies, which is why they don’t cancel one another out.) 

A rocket works by expelling material (matter or radiation) out the back. The 

rocket exerts a force on the fuel by hurling it backward, and the fuel exerts an 

equal but opposite force on the rocket, which drives the rocket forward.4 The 

warp drives do not work this way; there is no ejecta thrown backward to propel 

4. A common misconception, easily arrived at by watching a space launch, is that a rocket 

works by “pushing” against the surface of the earth. If that were true, a rocket could not function 

in empty space, because there would be nothing to “push against.”
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the spaceship forward. The spaceship sits at rest inside the bubble and the 

bubble simply carries the spaceship along with it. This would also be true for 

our example of the two-particle negative- and positive-mass system that self-

accelerates (discussed in chapter 11). In that case also there is no fuel ejecta 

that produces a reaction force on the system driving it forward. Looking at it in 

this way, it is perhaps not too surprising that the warp bubbles require negative 

energy for even arbitrarily small speeds.

Lobo and Visser also showed that the total negative energy of the warp fi eld 

must be an appreciable fraction of the positive mass of a spaceship placed 

within the bubble. In order for the total negative energy in the warp fi eld not to 

exceed the mass of the spaceship, they found that the bubble speed had to be 

extremely low. It is worth mentioning again that Lobo and Visser’s conclusions 

are independent of any assumptions using quantum inequalities, since they 

did not assume anything about the nature of the negative energy.

Ways Out?

Let us return to the subject of the quantum inequality bounds on wormholes 

and warp drives. Those of you who are uncomfortable with the conclusions 

we have drawn might be wondering if there are any ways to circumvent them. 

We will discuss a few here. One possibility would be to try to superpose (add 

the eff ects of ) many diff erent fi elds involving negative energy. While each fi eld 

individually might obey a quantum inequality bound, by putting many such 

fi elds together it might be possible to overwhelm the bound. However, one can 

estimate how many fundamental fi elds in nature would be required to over-

turn, say, the restrictions on traversable wormholes. For example, a calculation 

shows that for a 1-meter wormhole, one would need 1062 fundamental fi elds! 

(If you are a string theorist, and you believe that there really are 1062 or more 

fundamental fi elds in nature, then shame on you!)

Other possibilities might include classical fi elds with large negative ener-

gies, such as the nonminimally coupled scalar fi eld. However, as we saw in 

the last chapter, attempts to make traversable wormholes from them involved 

enormously large values of the fi eld parameters. As Fewster and Osterbrink 

recently showed, the quantized version of this fi eld does not obey the usual 

quantum inequalities (although it does obey a weaker form, the implications 

of which are currently under study).

Recall also that the quantum inequalities were proven for free fi elds. From 

the work of Olum and Graham, we learned that interacting fi elds are unlikely to 
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obey the usual quantum inequalities. It is possible that they obey some other 

form of quantum inequality, as in the case of the quantized NMCSF. Calcu-

lations involving interacting fi elds are mathematically much more complex 

than those for free fi elds, so the situation is unclear at present, although some 

people are currently investigating this problem.

Lastly, we mention the possibility that the “dark energy,” which is driving 

the recently discovered accelerated expansion of the universe, might violate 

the weak energy condition. For many years, astronomers had expected that the 

gravitational attraction of all the galaxies on one another would gradually slow 

down the expansion of the universe over time. However, observations of dis-

tant galaxies made in the late 1990s indicated, to most people’s great surprise, 

that the expansion of the universe was speeding up!

The question is: What is causing this? Since we don’t know, we simply call it 

“dark energy,” because its only manifestation seems to be gravitational. What-

ever it is, it must have a repulsive gravitational eff ect, which can be modeled in 

several ways. One of the most popular is a “cosmological constant,” an extra 

(but mathematically allowed) term in Einstein’s fi eld equations of gravitation. 

Originally introduced by Einstein to keep the universe static, as it appeared to 

be at that time, it was abandoned soon after Edwin Hubble discovered in 1927 

that the universe was expanding. Einstein called it “the biggest blunder” he 

ever made. In light of the present situation, perhaps he was wrong about that.

The cosmological constant term acts as a repulsive force at large distances. 

It has negative pressure, but positive energy density. So it is not exotic matter, 

in the sense that we have been using the term. (Not to say that it isn’t weird!) 

Other proposed models for dark energy include new kinds of fi elds, possi-

bly exotic, with negative energy density. At current writing, these weak energy 

condition-violating fi elds are not inconsistent with the observational data. 

At present, the riddle of dark energy is one of the most intensely investigated 

problems in cosmology, and the answer is far from clear.

If we had to bet on any of these possibilities for avoiding the conclusions 

of the quantum inequalities, I think we might pick either interacting fi elds 

or some form of exotic dark energy. But at this point our bet would be a 

small one.

Time Machine Destruction and Chronology Protection

In the early 1990s, Kip Thorne was visiting the University of Chicago to give a 

talk on his work on wormhole time machines. It was pointed out by colleagues 
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Bob Geroch and Bob Wald that once the time travel horizon forms, a beam of 

radiation could circle through the wormhole over and over again, an arbitrary 

number of times, piling up on itself, until the huge energy density thus pro-

duced would destroy the wormhole. This worried Thorne for a while until he 

realized that, upon each traversal of the wormhole, the circulating radiation 

beam would get defocused due to the diverging eff ect of the wormhole on light 

rays (recall that this eff ect was discussed in chapter 9). As a result, he found 

that this defocusing property would dilute the energy in the beam more and 

more on each pass so as to overwhelm the eff ect of the pileup. The wormhole 

time machine was safe. Or was it?

Sun-Won Kim, from Ewha Womans University in Korea, and Thorne pub-

lished an article in 1992 with a surprising conclusion: although Thorne had 

earlier concluded that a beam of classical radiation circulating through the 

wormhole would not lead to its destruction, he and Kim now turned their atten-

tion to the eff ects of vacuum fl uctuations circulating through the wormhole. They 

found something totally unexpected. Unlike classical radiation, the vacuum 

fl uctuations were not defocused by the wormhole. Kim and Thorne’s calcula-

tions showed that the vacuum fl uctuations would travel through the wormhole 

over and over again, piling up on themselves and causing the destruction of the 

wormhole. And vacuum fl uctuations are everywhere; they can’t be “turned off .” 

So it appeared that the wormhole time machine would self-destruct as soon as 

it was formed.

However, there also seemed to be a potential loophole. The energy density 

pileup of vacuum fl uctuations becomes infi nitely large for only an infi nitesimal 

instant of time and then dies down again. It peaks right when the wormhole 

fi rst becomes a time machine. Kim and Thorne were using the techniques of 

quantum fi eld theory in curved spacetime to analyze this problem. This is also 

called the theory of semiclassical gravity. It treats matter and energy according 

to the laws of quantum mechanics, but treats gravity according to classical 

(nonquantum) general relativity. Although we know that this theory is valid 

over a wide range of circumstances, it cannot be a complete theory. Ultimately, 

we expect it to be superseded by a quantum theory of gravity. The catch is that 

the laws of quantum gravity appear to kick in right when the energy density of 

the vacuum fl uctuations becomes large enough to destroy the time machine. 

The key question is: Will those laws cut off  the growth of the energy density 

buildup of the vacuum fl uctuations before it becomes large enough to destroy 

the time machine? After much back-and-forth discussion between Thorne and 
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Stephen Hawking, it was concluded that the answer could well be “no.” Unfor-

tunately, we cannot know for sure until we have the laws of quantum gravity in 

our possession. So at present the answer is not completely clear-cut.5

Hawking subsequently proposed his “chronology protection conjecture”: 

the laws of physics prevent the formation of time machines for backward time travel. 

He initially thought that the mechanism for this would be the energy density 

pileup of circulating vacuum fl uctuations on the time travel horizon, as Kim 

and Thorne had found. Hawking’s proposal was that this process would be the 

chronology enforcer for any kind of time machine, wormhole or otherwise. 

However, since his initial proposal, counterexamples have been found. That is, 

there are particular model spacetimes one can cook up in which a time travel 

horizon forms, but the energy density of the vacuum fl uctuations on the hori-

zon does not blow up as one approaches the time travel horizon. Therefore, if 

nature does protect chronology, it cannot always be by this mechanism.

In 1997, Bernard Kay, Marek Radzikowski, (then both at the University 

of York), and Bob Wald gave a very strong mathematical argument in favor 

of Hawking’s chronology protection conjecture, using the techniques of 

quantum fi eld theory in curved space, that is, semiclassical gravity. The Kay-

Radzikowski-Wald results showed that the quantity that represents the matter/

energy (and other stuff , like pressures and fl uxes) of a quantum fi eld, the so-

called quantum stress-energy tensor,6 either blows up (as in the Kim-Thorne 

wormhole time machine) or is undefi ned, on a time travel horizon, for any 

physically sensible quantum state of the fi eld.7 If it blows up, we would expect 

that the back-reaction on the spacetime would destroy the time machine. If it 

is undefi ned, then that says that a sensible quantum fi eld theory description on 

the time travel horizon is unattainable. Presumably, one would then need the 

laws of quantum gravity to determine what happens. The Kay-Radzikowski-

Wald results would seem to be evidence in favor of chronology protection.

However, Visser pointed out that to determine when the laws of quantum 

gravity kick in depends not just on when the quantum stress-energy ten-

sor blows up. It also depends on when quantum fl uctuations of spacetime, 

5. More detail on this topic can be found in Kip Thorne, Black Holes and Time Warps: Einstein’s 

Outrageous Legacy (New York: W. W. Norton, 1994), chapter 14.

6. Technical note: Here, we really mean, more precisely, the “expectation value” of the stress-

energy tensor.

7. The previously mentioned counterexamples have the peculiar property that the quantum 

stress-energy tensor is well behaved up to, but not right on, the time travel horizon.
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 predicted by the uncertainty principle, become very large. He pointed out that 

these two regimes need not be the same.

Visser defi ned what he called the “reliability horizon,” up to which we can 

trust the laws of semiclassical gravity, but past which one would need the 

laws of quantum gravity to decide what’s going on. He argued that if the time 

travel horizon lies outside the reliability horizon, then the Kay-Radzikowski-

Wald results of semiclassical gravity are trustworthy. However, if the time 

travel horizon lies inside the reliability horizon, then the laws of semiclassical 

gravity break down before one gets to the time travel horizon. In that case, the 

laws on which the Kay-Radzikowski-Wald calculation is based have already 

broken down before you even reach the time travel horizon, so what the Kay-

Radzikowski-Wald results tell you about what happens there is suspect. If 

this is the situation, then we need the full laws of quantum gravity to resolve 

the issue.

For example, if in your time machine spacetime, the quantum stress-energy 

tensor starts to increase rapidly as you approach the time travel horizon, but 

has not yet blown up when you have reached the reliability horizon, then you 

can’t determine what happens past that point without the laws of quantum 

gravity. Maybe quantum gravity cuts off  the explosion and saves the day, or 

maybe it doesn’t, and the time machine is destroyed. Without those laws, you 

can’t know for sure. Visser then went on to give a convincing argument that, 

in fact, the time travel horizon generally lies inside the reliability horizon (see 

the cartoon in fi gure 12.1). So it appears that to settle the question of whether 

the universe protects chronology, and so outlaws time machines, will require 

knowledge of the laws of quantum gravity. Visser is careful to emphasize that 

his result does not imply that one could actually succeed in building a time 

machine. Rather, what it implies is that our current knowledge is insuffi  cient 

to defi nitively answer the question. On the other hand, the Kay-Radzikowski-

Wald result implies that a time machine spacetime cannot be described semi-

classically. It is rather hard to imagine what it would be like, or even mean, to 

“travel” through a region of spacetime that could only be described by the laws 

of quantum gravity. Of course, to have the paradoxes of time travel, one would 

only need to be able to send signals through such a region, not necessarily to 

travel through it oneself. But even that may be problematic in a regime where 

space and time do not have their usual forms.

One of the examples in which the “back-reaction” of the vacuum fl uctua-

tions on the spacetime geometry can be made as small as possible is Visser’s 

ingenious “ring of wormholes” spacetime. Suppose that we have a number of 
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wormholes, N, arranged in a ring. Visser sets up the parameters of his model 

so that each individual wormhole is not itself a time machine. An observer 

passes through one wormhole and then journeys through normal space to the 

mouth of the next successive wormhole in the chain, and so on. Visser then 

goes on to demonstrate that, by starting with a system of such wormholes, 

no subgroup of which is a time machine, one can turn it into a time machine. 

Furthermore, for this ring of wormholes, his detailed calculations show that 

the back-reaction of the quantum fl uctuations can be made as small as one 

likes, right up to the reliability horizon, by letting the number of wormholes, 

N, become arbitrarily large. The more wormholes one adds, the smaller the 

back-reaction. Visser’s conclusion is not that he has succeeded in building a 

time machine, but that the laws of quantum gravity will be needed to decide the 

issue. This is because of the problem of reliability versus time travel horizons 

discussed earlier.

Hawking has retreated somewhat from his original suggestion that the en-

ergy density of vacuum fl uctuations will always be the mechanism that protects 
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fig. 12.1. Time travel versus “reliability” horizons. Beyond the reli-

ability horizon, spacetime cannot be treated semiclassically and we 

need the laws of quantum gravity to determine what actually happens.
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chronology. He has since suggested other possible ways that time machines 

might be forbidden, which are a bit too technical to be described here. As of 

this writing, Hawking still appears to feel that some form of chronology protec-

tion is likely to be true.

If so, perhaps the present situation is analogous to attempts to build per-

petual motion machines prior to the discovery of the laws of thermodynam-

ics. Careful analyses of such machines show that they always failed for one 

reason or another, but the particular reason varied from machine to machine. 

We now know that the underlying principles that they all violate are the fi rst 

or second laws of thermodynamics. Maybe there is a similar principle at work 

here that always protects chronology, but not necessarily always by the same 

mechanism. However, for now at least, Hawking’s proposal still remains a 

conjecture—albeit a reasonable one, in our opinion.

One of the themes of this book has been the connection, due to special 

relativity, between the possibility of superluminal travel and that of backward 

time travel. With this connection in mind, we might ask whether the chro-

nology protection conjecture, if true, also necessarily forbids superluminal 

space travel. Suppose you can create an object—a wormhole, warp bubble, 

 whatever—that allows superluminal travel. Then, as discussed in chapters 6 

and 9, the principles of relativity ensure that you can create an arrangement of 

two such objects operating in opposite directions, one at rest in each of two 

diff erent inertial frames, which will have the following property. An object or 

person following a worldline through the two objects in succession will return 

to the starting point in spacetime. That is, the worldline would be a closed 

timelike curve, the formation of which is precisely what is forbidden by the 

chronology protection conjecture.

However, even if true, the conjecture does not imply that you can’t make 

wormholes. Rather, it implies is that you can’t have a confi guration of worm-

holes (or warp bubbles or Krasnikov tubes) that would lead to the formation 

of a closed timelike curve. As long as the confi guration is such that a would-be 

time traveler will return to her starting point after she left, her worldline will 

not be a closed timelike curve. Superluminal travel, however, can still occur. Our 

point is that, while faster-than-light travel can be arranged so that it is possible 

for a traveler to return to her starting event, it need not be arranged that way. A 

chronology protection mechanism would rule out the former possibility but 

not the latter. But, as we have seen, you do have to be careful in choosing the 

routes of your wormholes and warp bubbles.
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In the future, the human race may well want, or need, to expand beyond 

the solar system. A world with a warp drive, but without backward time travel, 

and its associated paradoxes, might well represent a best-case scenario. Un-

fortunately, even though chronology protection does not appear to forbid warp 

drives, this does not eliminate the discouraging prospects for the existence of 

wormholes or warp bubbles suggested by the quantum inequalities that we 

have discussed.
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13
Cylinders and Strings

To be accepted, new ideas must survive the most 

rigorous standards of evidence and scrutiny.

carl sagan, Cosmos

Rolled-Up Universes

A very simple example of a universe that 

has closed timelike curves is simply fl at 

spacetime with the time dimension wrapped into a circle. We can make a two-

dimensional model of such a universe as follows. Take a piece of paper (which 

we can think of as representing a piece of infi nite fl at spacetime) and roll it into 

a cylinder. Let the time axis be a circle that wraps around the cylinder. (Note that 

although our cylinder is three-dimensional, the surface of the cylinder, which 

represents the universe in this model, is two-dimensional.)

An observer who has the time axis as his worldline returns to the same 

moment in space and time. Lines that run along the cylinder, parallel to its 

axis, represent spacelike surfaces (in this two-dimensional model). A moving 

observer’s worldline will wrap around the cylinder at an angle of less than 45° 

with respect to the time axis, just as in fl at spacetime. In fact, this cylindri-

cal spacetime is fl at, because the geometry of a cylinder is exactly the same 

as that of the fl at piece of paper. To see this, note that the sum of the angles 

of a triangle drawn on the fl at piece of paper remains equal to 180° even after 

the paper has been rolled up into a tube. Recall that if the space was curved, 

the sum of the angles of a triangle would sum to either more than or less 

than 180°.

What has been changed is the “topology” of the piece of paper, that is, 

loosely, how diff erent points on the cylinder may be connected with one an-

other. Note that on a fl at piece of paper, it is possible to take any circle that 

you draw on it and contract it continuously into a point while remaining on 
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the paper’s surface. However, on a cylinder, a circle that wraps around the 

symmetry axis of the cylinder cannot be contracted into a point while re-

maining on the surface of the cylinder. So we can always create examples of 

spacetimes with closed timelike curves simply by artifi cially fi ddling with 

the topology of spacetime. This is not to say that such models should neces-

sarily be taken as serious models of our universe; we have no reason to be-

lieve that our universe is cylindrical. Such models merely provide more ex-

amples for physicists and mathematicians to examine the consequences of 

Einstein’s equations.

Notice that, in practice, our cylindrical universe above cannot be created 

starting from a fi nite region of spacetime. Either our universe is “born” with 

that structure or it isn’t. This is a characteristic of all of the spacetimes we dis-

cuss in this chapter that contain closed timelike curves.

Our cylindrical universe has some interesting properties. Keep in mind that, 

in actuality, the cylinder has no “ends.” The model illustrates only a fi nite por-

tion of an infi nite cylinder. Consider the worldline of a moving observer that 

winds around the cylinder. We can ask: on a given spacelike slice, is there one 

observer or many? On an infi nite spacelike surface, there will be many (in fact, 

an infi nite number of ) copies of such an observer at a given instant of “time,” 

that is, on a single spacelike slice. There will be one copy located at every point 

where the worldline intersects the spacelike surface. This observer returns to 

the same point in time, but at diff erent positions in space. On the other hand, 

each of these copies of the observer will be a diff erent age, according to the 

observer’s own proper time. So the question of whether, on a given spacelike 

slice, there are many observers or only one rather depends on exactly what you 

mean by the question.

Since the cylinder is infi nite, we can talk about the number of copies of the 

observer per unit length (in our two-dimensional model) on a spacelike sur-

face. For a given length of cylinder, the number of copies depends on the veloc-

ity of the observer. Curiously, there are more copies per unit length the slower the 

observer moves. The minimum number of copies per unit length is determined 

by the number of intersections that a light ray, oriented at 45° to the time axis, 

makes with the spacelike surface. We can consider this to be the limiting case 

of an observer who moves arbitrarily close to the speed of light. One rather 

strange feature of this spacetime is that the slower you go the more copies of 

you there are per unit length. However, in the other limiting case where your 

velocity goes to zero, there is only one copy of you on the spacelike slice! This 

is because the time axis intersects the spacelike surface at only one point.
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A “Rotating” Universe

A more sophisticated example is due to a very famous German mathematician 

named Kurt Gödel. In 1949, Gödel considered an infi nite universe made of 

rotating dust.1 He discovered that in such a universe, any circle of suffi  ciently 

large radius would be a closed timelike curve. How large the radius had to be 

was determined by how fast the universe was rotating. Such a universe would 

certainly be an interesting place to live, and the equations of general relativity 

seem to make it clear that such a universe could exist without contradicting 

any of the laws of physics, as we know them. However, and probably fortu-

nately for us, that is not the universe we live in. Despite having closed time-

like curves, there is no exotic matter in Gödel’s universe. However, it does not 

violate Hawking’s theorem, because it is infi nite in size and thus (obviously) 

cannot be constructed in a fi nite time. The universe would have to have this 

structure ab initio. Observations of distant galaxies strongly indicate that the 

universe, in fact, is not rotating in the way envisioned by Gödel.

Cylinder Time Machines

In the rest of this chapter, we will consider time machines that involve the pres-

ence of one of several kinds of infi nitely long string-like or cylindrical systems 

containing rotating matter or energy. (Here, we mean infi nitely long cylinders 

existing in space, as opposed to the infi nite cylindrical-type universes considered 

at the beginning of the chapter.) We know more about infi nitely long cylinders 

than those of fi nite length, since it is easier to solve the diffi  cult Einstein equa-

tions in the infi nite length case (where you don’t have to worry about the ends 

of the cylinder). In that case the solution does not depend on z, the axis of sym-

metry of the cylinder; wherever you are along the z direction, you still see the 

cylinder stretching off  to infi nity in both the positive and the negative z direc-

tions. Another way of saying it is that no matter where you are along the axis of 

the cylinder, the spacetime surrounding the cylinder looks the same.

In some cases it is possible, by running in the proper direction (say, clock-

wise) around a circular path enclosing the infi nite cylinder in question, to 

1. “Dust” actually has a technical meaning in general relativity. It refers to a cloud of randomly 

moving electrically neutral particles whose speeds relative to one another are small compared with 

the speed of light. The mass-energy of the dust particles is very large, compared with the pressure, 

which can be taken to be 0.
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return to your starting point in space before you left. You may have to run 

quite fast to do this, but you won’t have to exceed the speed of light relative to 

your immediate surroundings. Thus, you can travel into your own past, even 

though, throughout the process you will see time “fl owing” forward in the 

usual way in your immediate neighborhood. Having gone around the circle, 

if you now wait around at the starting point for a while, perhaps sitting on a 

couch and reading a good science fi ction story, you will then fi nd yourself back 

at your starting point in both space and time, able to greet your slightly younger 

self who has not yet started running. In other words, these infi nite cylinders 

are encircled by closed timelike curves. Therefore, if you found one of these 

systems you would, in fact, have found a time machine.

None of these systems, however, provide a practical recipe for actually 

building a time machine, since you can’t hope to construct an infi nitely long 

cylinder in a fi nite amount of time or in a fi nite region of space. In the theory 

of electromagnetism, one often studies infi nitely long systems because they 

provide a good approximation to the case of a long fi nite object, as long as your 

distance from the object is small, compared to its length. You can get some 

feeling why this is true if you imagine you put your eye very close, say, an eighth 

of an inch, to the midpoint of a yard stick. It will look to you like the yard stick 

runs off  forever in both directions, whereas from the other end of a football 

fi eld the yard stick would appear very short.

Our infi nitely long cylindrical time machines have no region of negative en-

ergy density. For the case of an infi nitely long cylinder, where the time machine 

cannot be built in a fi nite region of spacetime, this does not violate Hawking’s 

theorem. However, if we made the time machine just very long, but not infi -

nite, Hawking would tell us that there could be no closed timelike curves, that 

is, no time machines. An infi nitely long cylinder, if it has no negative energy 

density, is qualitatively diff erent with respect to time travel from one of fi nite 

length, however long it might be, because of Hawking’s theorem.

Thus, the models we discuss in this chapter do not provide us with any 

guidance as to how we might build a time machine, though they do provide 

additional insight into how time machines can occur in the context of general 

relativity. The last model we look at is interesting because it involves objects, 

which, while infi nitely long and, hence, unbuildable, might very well have been 

produced in the very early universe, in the fi rst minute fraction of a second 

following the big bang. But we will fi rst look at examples of time machines 

involving infi nitely long rotating cylinders of matter or energy.

The fi rst example dates all the way back to 1937, when the Dutch-born 
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physicist W. J. van Stockum considered an infi nitely long cylindrical column 

of rotating dust. Van Stockum assumed that the density of the dust column 

and its speed of rotation were just such that the column was held together by 

the mutual gravitational attraction of the dust particles without the need of a 

vessel to contain them. Much later, in the 1970s, it was pointed out by Frank 

Tipler (then a graduate student at the University of Maryland) that as long as 

the speed of rotation of the dust column as a whole was high enough there 

were closed timelike curves surrounding the column at certain distances from 

its center that could be calculated, given the column’s speed of rotation. An 

observer moving along such a curve at a suffi  ciently high speed, which could 

be less than the speed of light, would indeed return to the starting point before 

he or she had left.

We observe that there is no exotic matter present in van Stockum’s exam-

ple. The energy of the dust column is given by the total mass of the particles 

through the Einstein relation E = mc2 and by the kinetic energy that they posses 

by virtue of being in motion. These are both positive, so there is no negative 

energy density present. As we have already noted, this does not bring down 

the wrath of Hawking. Due to the infi nite length of the column, such a time 

machine cannot be constructed in a fi nite region of spacetime; hence, its con-

struction without exotic matter does not violate Hawking’s theorem. But for 

this very reason the van Stockum time machine is largely of only theoretical 

and mathematical interest. To construct one would take an infi nite length of 

time, making it of somewhat limited practicality.2

Mallett’s Time Machine

Another more recent example of a rotating cylinder–type time machine is due 

to Ronald Mallett. He has discussed this in an article published in the journal 

Foundations of Physics in 2003, and also in his autobiographical book Time Trav-

eler (2006). Due to the interest this work has generated in the popular press, we 

will give a somewhat more extended treatment of this particular topic.

Mallett found a solution of the Einstein equations outside an infi nite cyl-

2. In 1976, Tipler argued, on the basis of the infi nite van Stockum cylinder solution, that a 

suffi  ciently long fi nite rotating cylinder would provide the basis for a time machine. However, a 

year later, he proved a general theorem that showed that would not in fact be the case. His theorem 

showed that in order to get a time machine with a fi nite cylinder, one would need to violate the 

weak energy condition (i.e., have negative energy) or have a singularity. Tipler’s theorem is related 

to the more powerful one that Hawking proved in 1992, which we discuss in appendix 6.
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inder of circulating light, which did indeed contain closed timelike curves. 

He suggested that a fi nite cylinder of laser light, carried perhaps by a helical 

confi guration of light pipes around the z axis, could be used as the basis of a 

buildable, working time machine. However, Mallett’s model is fundamentally 

fl awed.

The Mallett solution is independent of z, the coordinate along the axis of 

the cylinder, meaning that it applies in the case of an infi nitely long cylinder. 

As in the previous cases of the van Stockum and Gödel solutions, the Mallett 

solution contains no region of negative energy density. Hence, it has the same 

problem as those solutions. On the basis of the Hawking theorem, one would 

not expect that a fi nite-length cylinder of circulating light could be the basis 

of a time machine, while a cylinder of infi nite length cannot, by defi nition, be 

constructed in a fi nite length of time. Professor Mallett makes no reference to 

the Hawking theorem in either his paper or his book. In the book, however, he 

discusses the possible construction of a time machine, using a fi nite-length 

cylinder of circulating light, assuming its behavior would approximate that 

predicted by his solution for an infi nite cylinder. He also discusses possible 

experiments to detect backward time travel produced by such a machine. All 

of this would be physically relevant only if the Hawking theorem (the validity 

of which is generally recognized) could be evaded in some way. For the infi -

nite cylinder, Hawking’s theorem is evaded because the time travel horizon 

is not compactly generated (see appendix 6). In the case of a fi nite cylinder, 

the only obvious way to evade the theorem would be to include some region 

of negative energy density. Our experience with studies of other systems and 

the constraints of the quantum inequalities suggests that one is not likely to 

be able to do this in an easy or off hand way, if at all. In summary, the Hawking 

theorem rules out the construction of a time machine using a fi nite cylinder of 

laser light, if one accepts the assumptions of the theorem, which we’ve tried to 

argue in appendix 6 are reasonable.

In 2004, Ken Olum, together with Allen, wrote a paper that was published 

in Foundations of Physics Letters examining the Mallett model more closely. They 

confi rmed that the model provided a solution to the Einstein equations and 

that it predicted the existence of closed circular timelike curves encircling the 

outside of the cylinder. (In Mallett’s published solution, there are no closed 

timelike curves in the space inside the cylinder.) A person or object traveling 

around one of the curves would return to the same starting point in space and 

time, thus opening the possibility of encountering a younger self. In other 

words, there were indeed time machines in the model when the cylinder was 
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of infi nite length. However, in addition to the problems associated with Hawk-

ing’s theorem, Olum and Allen found that the model has two additional prob-

lems, one practical, and one theoretical.

The practical diffi  culty arises because the model also predicts the ratio of the 

radius R of the closed timelike curves to R0, the radius of the circulating light 

beam. Taking the results from Mallett’s paper, one fi nds that the numerical 

predictions of the model itself for this ratio absolutely rule out any possibility 

that the model can ever lead to the production of a time machine. For certain 

reasonable assumptions about the laser power and the size of the system, that 

ratio obeys the inequality

R / R
o

> 10
1046( )

!!!!

In particular, this number assumes a laser power of 1 kilowatt, a light cylinder 

radius of 0.5 meters, and a radius of the mouth of the light pipe through which 

the laser beam travels of about 1 millimeter (a schematic diagram is shown 

in fi gure 13.1). These are the numbers used by Olum and Allen in their paper 

analyzing the Mallett model, and we will stick to those numbers. One mega-

watt = 103 kilowatts might be a bit more refl ective of the present state of laser 

technology. However, as we will see, the particular values of these numbers are 

completely irrelevant.

The number on the right side of the above inequality is unimaginably, in-

comprehensibly large. We have become used to hearing about trillions since 

the economic crisis of October 2008 and still think that is a pretty big num-

ber. However, a trillion is only 1012. Not only does the number on the right 

side of our inequality contain 1046 rather than 1012, which would be impres-

sive enough, but 1046 isn’t the number  R /R0 itself—it’s just the exponent, the 

number of times 10 must be multiplied by itself to get. In other words, we get 

1046 = log(R /R0). You may remember that when we discussed logarithms in 

chapter 7 in connection with the defi nition of entropy, we pointed out that if N 

is a very large number, log N, while it may also be large, is much smaller than 

N. That is, log(R /R0) is much smaller than R /R0.

Suppose we let R be as big as the radius of the visible universe, which is 

about 1010 light-years, the greatest distance a light signal emitted at the time 

of the birth of the universe, about 1010 years ago, could travel and still reach us 

today. Now, a light-year is about 1016 meters, therefore, the radius of the visible 

universe is about 1026 meters. In addition, suppose we were really clever and 

built a Mallett time machine whose circulating light beam had a radius equal to 
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the radius of an atom, about 10–10 meters. This situation would give the largest 

value of R /R0 we could hope to achieve, even theoretically, for such a the time 

machine, but it would give an exponent of only 36 rather than 1046 in R /R0 (i.e., 

it would give R /R0 ≈ 1036). This is still a factor of 1010, or ten billion times the 

size of the visible universe. So the predicted closed timelike curves, and therefore, the 

crucial feature of the time machine itself, lie beyond the boundary of the visible universe 

by a huge factor. This implies that one cannot build a time machine of this type 

using even an infi nitely long cylinder of circulating laser light.

Just for fun, let’s examine how such a humongous number as 10
1046( )

arises. 

To lapse into a fi gure of speech that has entered the lexicon recently, it is the 

result of a perfect storm of large numbers or small numbers in denomina-

tors. For reasons we won’t try to go into, the condition for closed timelike 

curves to arise in the Mallett model, as given in his article, is K log R / R0 = 1, 

where K is a dimensionless constant (i.e., one that has no units) of the order 

of Gm / c2, where m is the mass per unit length of the laser beam. Here, G is New-

R

         distance to

 closed timelike curves

light pipe 

containing circulating 

laser beam

to infinity

to infinity

R > 101046
 R

fig. 13.1. Mallett’s circulating light cylinder time machine. The closed timelike 

curves in this model only occur at distances from the cylinder that are unimagin-

ably larger than the size of the visible universe. This problem cannot be fi xed by 

increasing the power of the laser light.
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ton’s constant, which appears in his law of gravitation and was introduced in 

chapter 8, and G/c2 is of order 10–28 meters per kilogram. We can rewrite m as 

ε / c2, where ε is the energy per unit length in the beam. The quantity we usually 

know about a laser is P, the power of the laser, which is the energy passing 

through a given plane perpendicular to the laser beam per second. The energy 

per unit length turns out to be ε = P / c, and m = ε / c2 = P / c3 (these equations are 

derived in appendix 7, for readers who are interested in the details). Thus, in 

addition to the small value of  G/c2, we have three extra factors of 1 / c in the de-

nominator of  K. Opposing all these negative powers of 10, there is a puny little 

factor of 103, since we take P = 1 kilowatt = 103 watts, and fi nally an extra puny 

little 103 derived by a geometrical argument in Olum and Allen’s article (this 

is also derived in appendix 7). This converts m, the mass per unit length along 

the laser beam as it winds around the z axis, to the total mass per unit length 

along the z axis in the circulating laser beam. Putting all this together, one fi nds 

K ≈ 10–46, or 1 / K ≈ 1046.

This very small value refl ects the combination of two factors. First, gravi-

tational forces are very weak, which means that the value of G/c2 is very small. 

Second, the amount of mass in even a very powerful light beam is tiny, com-

pared to the same volume of ordinary matter, because of the small value of 

P/c3, even when P is quite large. Given these two factors, and the fact that creat-

ing a closed timelike curve involves a rather drastic distortion of spacetime, it 

was possible to predict intuitively, even without a detailed calculation, that the 

eff ect produced by a cylinder of circulating light would likely be very small.

However, as signifi cant as the large value of 1 / K is, the incredibly large 

value of R / R0 could not have been intuitively predicted until one knew the de-

tails of the Mallett solution. What moves the result for R from the huge to the 

humongous is that not only is K very large, but that in Mallett’s equations it is 

not R but the logarithm of R that is proportional to 1 / K. This means that R / R0 

is not just equal to 1 / K, but to the absurdly large value 101/k.

It may seem surprising that the eff ects of such a very small mass of the light 

beam show up at very large distances rather than very close to the cylinder of 

light. The reason is that we are dealing with the unphysical situation of an in-

fi nitely long cylinder that looks just as long no matter how far you get from it. 

The fi elds produced by such objects sometimes actually increase very slowly as 

the distance becomes infi nitely large. In fact, this happens in the van  Stockum-

 Tipler dust column model referred to above. In that model, in addition to de-

pending on distance, the gravitational fi eld depends on the rate of rotation. 
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One fi nds that there are no closed timelike curves when the dust rotates very 

slowly. When the frequency of rotation—and therefore the kinetic energy and 

thus the mass of the source—is increased, closed timelike curves appear, and 

they are fi rst formed at infi nity.

As we have noted, it is common practice in many areas of physics to model 

fi nite sources by infi nite ones. This is regarded as a good approximation for 

radial distances much less than the length of the cylinder and away from the 

ends. However, in general relativity, it is dangerous to extrapolate the behavior 

of a fi nite source from an infi nite one. This is because, in Einstein’s theory, 

matter and energy curve the very structure of spacetime. An infi nite source 

can curve the large-scale, or “global” structure of spacetime in ways that a fi nite 

source cannot.

So what about time machines of fi nite length (if we ignore for the moment 

that they are forbidden by Hawking’s theorem because of the lack of exotic 

matter)? Such a device is well approximated by one of infi nite length only at 

radial distances R that are much less than L, where L is the length of the cylin-

der (i.e., at radial distances from which the apparatus “looks” to be essentially 

infi nite in length). Suppose—Hawking’s theorem and possible general rela-

tivistic complications notwithstanding—that a long, fi nite-length circulating 

light beam could in some circumstances be approximated by one of infi nite 

length. Then the prediction of closed timelike curves would apply only to a 

circulating light cylinder whose length exceeded the predicted radius of the 

closed timelike curves in Mallett’s model. Thus, we would need an apparatus 

whose length, though fi nite, would still be greater than 10
1046( )

 R0. Obviously 

building such an apparatus is not even remotely possible. Even if we relax the 

infi nite length requirement, constructing the “fi nite” length apparatus needed 

to create a Mallett time machine would be physically impossible.

In ending this part of the discussion, it is very important to emphasize that 

the problem is of such gigantic magnitude that no technological fi x is conceivable. 

For example, could one just increase the power of the laser? It turns out that 

changing P from 1 kilowatt to 4 × 1023 kilowatts, which is the total power out-

put of the sun itself, would change our result to R / R0 ≈ 10
1020( )

, which is again 

incomprehensibly large, compared to the value of 1036 we found for the ratio 

of the radius of the visible universe to R0. Even if we increased the laser power 

to about 1035 kilowatts, which is roughly equivalent to the total power output 

of the 200 billion stars in our galaxy, we would still get R / R0 ≈ 10
1011( )!

The preceding discussion, while it eliminates any actual possibility of using 
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a circulating light beam to produce a terrestrial time machine, suggests that, in 

principle, such a device could produce closed timelike curves, albeit at distances 

that lack any relevance to observable phenomena. Even that theoretical pos-

sibility might be of interest, since we know so little about when, or if, closed 

timelike curves can be produced.

However, as mentioned earlier, there is another questionable aspect of the 

Mallett solution. What happens when you turn the laser off  by setting P, and 

hence, K, equal to zero? You would expect to get just fl at spacetime at R > R0. 

For example, this is what happens in the van Stockum solution when the mass/

energy of the cylinder goes to zero. Another example is the Schwarzschild so-

lution, describing the spacetime outside of a spherical star, in the case when 

the mass of the star goes to zero. Again, what you get is fl at spacetime. This 

is the behavior one would expect for a physically realistic source. In the Mal-

lett solution, when you turn off  the laser, you get something that looks rather 

funny. Allen assumed that this was just because Mallett was using a noncon-

ventional coordinate system. Doing this, if you want, is perfectly in accord with 

the rules of general relativity.

Ken Olum, who is much more of a computer expert than Allen, was a bit 

more thorough. After some programming, Olum discovered that when he set 

P = 0 he didn’t get the usual fl at spacetime. Instead, he got a solution of the 

Einstein equations everywhere except at r = 0. There, on the axis, was a singu-

larity, where the curvature of the spacetime became infi nite. In fact, the singu-

larity was always present with or without the light beam. It was just easier to rec-

ognize once the light beam was turned off . Moreover, this was not an artifact 

of the particular choice of coordinates. Furthermore, the singularity was naked, 

that is, it was not surrounded by an event horizon as in the case of a black hole. 

As discussed in appendix 6, naked singularities are a serious problem, because 

their behavior or what will come out of them cannot be predicted. They render 

the spacetime that they inhabit unpredictable.

The closed timelike curves disappeared when the light beam was turned off , 

so they were not entirely the result of the singularity; the light beam played at 

least a part. The strength of the singularity depended only on R0. It could be 

eliminated only by letting R0 become infi nite. Since the closed timelike curves 

occur at R > R0, one could not eliminate the singularity without also eliminat-

ing any possible time machine, even if one then turned the beam back on. 

This makes it impossible to say whether a light beam of fi nite radius without 

the singularity could cause the closed timelike curves, or whether they depend 

on having both the light beam and the singularity. The fact that, with just the 
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singularity present, space is far from fl at at infi nity suggests that the closed 

timelike curves might be a cooperative result of the presence of both the light 

beam and the singularity, although this is not clear. However, the presence of 

the singularity in the absence of the light beam indicates that the spacetime 

is problematic to start with, even before the light source is turned on. In the 

Mallett model, we have a universe that, in principle, can have closed timelike 

curves, although unobservably far away. However, that universe is not the uni-

verse we live in because of the naked singularity.

Mallett’s original article does not mention the problem of the singularity, 

nor is it addressed explicitly in his book, Time Traveler. There he says:

I decided to dispense with trying to model mathematically either an optical 

fi ber or a photonic crystal. Instead, for the sake of generality and to keep the 

light beam on a cylindrical path, I elected to use a geometric constraint. This 

constraint was represented by a static (nonmoving) line source. Light naturally 

wants to travel along a straight line. The only purpose of the line source in my 

calculations was to act as a general constraint to confi ne the circulating light 

beam to a cylinder. (Set up experimentally, the line source could look like wrap-

ping a piece of string around a maypole, with the string being the light beam and 

the maypole serving as the line source.) The light beam itself would be conceived 

of as a massless fl uid fl owing in only one direction around the cylinder. This 

meant that the solution really contained two solutions: one for the circulating 

light and one for the static source.3

The idea, perhaps, is that the singularity approximates the gravitational fi eld 

of the mirrors or light pipes that carry the laser beam.

It is important to note that, in fact, the problem that Mallett actually solved 

was one of an infi nite cylinder of light with a line singularity on its axis, not a 

fi nite one where the light travels in light pipes. Furthermore, there is no reason 

to think that the eff ects of the line singularity along the axis that Olum uncov-

ered, and those, say, of an infi nitely long beam–carrying helical lucite light 

pipe wrapped around the axis would be good approximations to one another.

A recent article by Olum published in Physical Review shows that they are not, 

in fact, good approximations to one another at all. Using Mallett’s equations, 

Olum calculated the paths of freely moving particles and light rays (timelike 

and lightlike geodesics, respectively) in Mallett’s infi nite cylinder model. He 

found that no timelike geodesic, or any geodesic (timelike or lightlike) that 

3. R. L. Mallett with Bruce Henderson, Time Traveler: A Scientist’s Personal Mission to Make Time 

Travel a Reality (New York: Basic Books, 2006), 167–68.
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has any motion in the direction parallel to the cylinder axis, can escape to large 

distances. Furthermore, Olum found that every such geodesic originates and 

terminates in the singularity. Light rays moving entirely in the radial direction 

either outward or inward start or end, respectively, at the singularity.

For light rays moving perpendicular to the cylinder axis, there are several 

possibilities. There are some paths of light rays that orbit the singularity at 

fi xed distance. These are the trajectories that Mallett found. More generally, 

light rays start at the singularity and gradually spiral out to arbitrarily large 

distances. Other light rays start at very large distances from the cylinder and 

spiral into the singularity, where they come to an end. Olum also calculated the 

behavior of a particle initially at rest some fi nite distance away from the sin-

gularity. He found that such particles fall into the singularity, and thus are de-

stroyed, in a fi nite proper time. To quote Olum: “It therefore appears that any 

attempt to build a ‘time machine’ along the lines described by Mallett would 

have a very unfortunate eff ect on nearby objects.”4 Needless to say, this is not 

the behavior of particles and light rays in a system of light pipes in any sensible 

experimental setup.

In his book, Mallett claims that since the closed timelike curves are not pres-

ent until the light source is turned on, it must be the light source that produces 

the closed timelike curves. However, given our earlier discussion, it is likely 

that without the singularity there would be no closed timelike curves. And even 

if there were, they would be at unobservably large distances.

Since this has been a rather long discussion, let us summarize. If one ac-

cepts the assumptions of Hawking’s theorem (given in appendix 6), then it 

implies that no fi nite-sized time machine along the lines suggested by Mal-

lett, using only classical matter (i.e., no negative energy), will ever be possible. 

Even ignoring this and taking Mallett’s model at face value, one fi nds that it 

is fundamentally fl awed for a number of reasons. The closed timelike curves 

predicted by the model only occur at distances that are unimaginable orders of 

magnitude larger than the visible universe. This is not merely a technological 

problem that will be remedied in the future by clever engineering using more 

powerful lasers. For a cylinder of 1-meter radius, even if one increased the laser 

power to the power output of all the stars in our galaxy, the closed timelike 

curves still occur at distances of 10
1011( )

 meters, whereas the size of the visible 

universe is a mere 1026 meters. Another serious problem is that if one turns the 

4. K. Olum, “Geodesics in the Static Mallett Spacetime.” Physical Review D 81 (2010): 

127501–3.
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laser power off , Mallett’s solution does not reduce to fl at spacetime. Instead, 

on the axis of the cylinder there is a singularity, where the curvature of spacet-

ime becomes infi nite. Mallett claimed in his book that he used a “geometric 

constraint,” that is, the line singularity, to model the apparatus that would hold 

the light in a circle in a more realistic setup. However, the behavior of the mo-

tion of particles and light rays in the vicinity of the singularity can be calculated 

using Mallett’s equations. It is quite peculiar and certainly does not model the 

behavior of light rays in a system of light pipes.

We emphasize that what has been presented here is not an “alternative the-

ory” to that of Mallett. Also, unlike the cases of other time machines we have 

discussed, our conclusions do not depend on appeals to the vagaries of some 

as yet unknown quantum theory of gravity. Mallett’s model consists of classi-

cal general relativity with a classical matter source. This is an unambiguously 

solvable problem and, hence, a decidable question. The conclusions we have 

discussed are direct consequences of the equations Mallett himself has presented in his 

published paper.

Gott’s Cosmic String Time Machine

The fi nal example we’ll discuss in this chapter is the “cosmic string time ma-

chine” discovered by Richard Gott of Princeton in 1991. Before turning to 

Gott’s time machine, we will indulge ourselves in a brief discussion of cosmic 

strings, because they are fascinating objects in their own right. There also is a 

fair chance that they actually exist.

Cosmic strings are exceedingly thin but potentially incredibly massive ob-

jects. They have no ends, so either they occur in closed loops or they are of 

infi nite length. Many elementary particle theories predict cosmic strings. Their 

possible existence in a cosmological context was suggested in a paper by Pro-

fessor Tom Kibble of Imperial College, London. In most of these theories, the 

strings are so massive that, because of the Einstein relation E = mc2, they can 

only be produced in the early universe—where very high-energy particles were 

present during a very short time following the big bang—and not at terrestrial 

accelerators.

If cosmic strings exist, then because of their large masses, they might very 

well be of considerable signifi cance for cosmology and astrophysics. In addi-

tion, their predicted properties depend on the details of elementary particle 

theory. For that reason the discovery, or for that matter a defi nitive failure to 

discover, cosmic strings would give useful information about elementary par-
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ticle theory in an energy range that is of great interest but is largely inaccessible 

experimentally. This question of what we may be able to deduce about what 

went on at the very high temperatures in the fi rst tiniest fractions of a second 

of our universe thus provides a connection between physics at the very small-

est scales, that is, particle physics, and at the very largest, that is, cosmology. 

Therefore, many theoretical physicists who, like Allen, considered themselves 

particle physicists, have found themselves becoming part-time cosmologists 

and general relativists.

A cosmic string is best described by giving its mass per unit length, which we 

will represent by m, the same symbol we used for the mass per unit length of 

the laser beam in our discussion of the Mallett proposal. Let T be the tempera-

ture at the time when a particular kind of cosmic string formed as the early 

universe cooled. We will give T in energy units, since it is the average particle 

energy in the universe at the time in question that is relevant here.

In the case of a Planck-scale string, T is about 1019 times the rest energy of 

a proton or about 1019 GeV. Here, the G stands for “giga,” that is, billion. An 

“eV,” or, “electron volt,” is a basic unit of energy in particle physics. The string 

has a mass of about 1025 tons, or about 1,000 earth masses per meter. The 

width of such a string would be about the size of the Planck length, about 10–35 

meters, or around 1029 times smaller than the radius of an atomic nucleus. 

Such a string would indeed be an amazing object, an incredibly small width 

combined with a mass of many tons in every meter of length.

However, there is a respectable theory in elementary particle physics, called 

grand unifi cation, which would suggest that we might have cosmic strings that 

formed at a temperature of around 1015 GeV. Such a string thus would have an 

m of “only” about 1017 tons per meter.

There are a number of ways of searching for either direct or indirect obser-

vational evidence for cosmic strings, and none have been found, though there 

have been a couple of what seem to have been false alarms. Unfortunately, the 

sensitivity of all these methods is such that strings with the properties one 

might expect from particle theory are just on the verge of detectability. Thus, 

no fi rm conclusion can be drawn from the failure to detect them thus far, al-

though things are getting a bit dicey for strings predicted by grand unifi ed 

theories. Such strings are so massive that their existence can aff ect cosmologi-

cal evolution. At one time there was great interest in the possibility that strings 

provided the “seeds” around which galaxies condensed out of the original 

homogeneous cosmic soup. However, it now seems that fl uctuations associ-

ated with a very early rapid period of exponential expansion were responsible 



Cylinders and Strings > 211

for galaxy formation. For an account of this subject you should see the splen-

did book The Infl ationary Universe, by Alan Guth, who originated the idea of 

infl ation.

Most of the methods for detecting strings depend on their gravitational 

properties. The nature of the spacetime around a long straight cosmic string 

is closely connected with Gott’s scheme for a cosmic string time machine. 

The spacetime around a cosmic string was fi rst elucidated by Allen’s Tufts 

colleague, Alex Vilenkin, as a result of a chain of events in which Allen had 

a serendipitous involvement. Vilenkin solved the problem in an approxima-

tion in which the width of the string was neglected, which is in general a very 

reasonable approximation. Exact solutions were later given by several people, 

including Gott himself, and these confi rmed Vilenkin’s results.

Vilenkin grew up in Kharkov in the former Soviet Union. He went to Khar-

kov University, where he was very successful. However, because of his Jewish 

ethnicity, he found the path to graduate study was not open to him, and he 

wound up as a night watchman in the Kharkov zoo. Happily, the zoo was quiet 

during those hours, and Alex wrote and published two physics papers during 

that time. This was a time of détente in U.S.-Soviet relations, and some Jewish 

emigration was allowed. The Vilenkins were thus able to come to the United 

States, and Vilenkin entered the graduate program at the State University of 

New York at Buff alo, where he earned his doctorate in one year. After that, the 

Vilenkins moved two hundred miles or so along the Lake Erie shore, and Alex 

became, in 1977, a postdoc at Case-Western Reserve.

In 1978, Allen was grumbling his way through a term as chairman of the 

physics department at Tufts. Not being an administrator by taste, he had made 

a resoundingly Sherman-esque statement concerning his unwillingness to take 

the position when time came to choose a new incumbent. The fates, however, 

are sometimes fi ckle. A squabble developed between a majority of the physics 

department and the then dean of the faculty over who should be the next chair-

man. Allen found himself, seemingly, to be the person who was at least some-

what tolerable to everyone involved, and reluctantly decided to take the job.

To add to his problems, an unforeseen spring resignation led to the neces-

sity of fi nding a fall replacement on rather short notice. As it happened, Allen 

heard that there was a young Russian named Alex Vilenkin who was currently 

a postdoc at Case-Western Reserve. Allen assumed that Vilenkin’s letters of 

reference were exaggerated (it sometimes happens—however, these weren’t) 

but it was something of an emergency, and so Vilenkin joined Tufts in the fall 

of 1978 with a one-year appointment as an assistant professor of physics. Al-
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len and the other members of the physics department soon discovered that 

the United States—and Tufts in particular—owed the KGB a debt of gratitude 

unwittingly leading to the emigration of this young physicist of exceptional 

ability. Vilenkin’s appointment was extended to a normal three-year term and 

then to an early grant of tenure. He has become one of the world’s most emi-

nent cosmologists and has written seminal papers in four diff erent subareas of 

cosmology. He has been the director of the Tufts Institute of Cosmology since 

a private grant funded its establishment in 1989.

Cosmic strings are one of three classes of closely related objects called (ge-

nerically, for reasons that are a bit too complicated to go into here) “topologi-

cal defects.” One of the other classes, and the fi rst to be discussed, involves 

objects referred to as “domain walls,” which, as the name suggests, are planar 

rather than string-like. Allen came across these during a sabbatical at MIT in 

1973–1974 and wrote a rather minor paper that was one of the earliest ones 

on the subject to appear in Physical Review. In 1979 he wandered into Vilenkin’s 

offi  ce with a question he had been thinking about concerning the gravitational 

eff ects of a domain wall; he brought with him a copy of Kibble’s paper, men-

tioned earlier, discussing both cosmic strings and domain walls.

Allen’s question turned out to have a rather complicated answer, and it was 

about a year before Vilenkin produced a paper with an answer, as well as, for 

good measure, his discussion of the gravitational eff ect of a long straight cos-

mic string. Vilenkin went on to become perhaps the world’s leading expert on 

topological defects. In addition to his many papers on the subject, on some 

of which Allen has collaborated, he has written, together with Paul Shellard 

of the University of Cambridge, the defi nitive book in the fi eld. One of Allen’s 

prized possessions is a copy of Cosmic Strings and Other Topological Defects with 

Vilenkin’s signature, including a note of thanks for asking that question that 

got Alex interested in the subject.

What Vilenkin discovered about the spacetime outside a long straight cos-

mic string is rather remarkable. The space is fl at, that is, without curvature, 

and hence, despite its huge mass, a straight cosmic string exerts no gravita-

tional force on surrounding objects. Thus the space around such a string at a 

given moment of time could be drawn on an undistorted fl at sheet of paper on 

which the usual Euclidean geometry holds, the sum of the angles of a triangle, 

for example, would be 180° or π radians. However, a path around a circle of 

radius r centered on the string, at constant time in the reference frame in which 

the string is at rest, will have a length of (2π – θ)r, rather than 2πr as expected 

from the familiar formula for the radius of a circle. It is as though someone 
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had taken a scissors and cut a wedge-shaped piece of pie of angle q out of the 

paper and then glued the two sides of the wedge together, as illustrated in fi g-

ure 13.2, so that simultaneous events on opposite sides of the wedge become 

identifi ed with one another.

In the cosmic string case the resulting space is called a “conical” space, 

since in order to glue the two sides of the wedge together, the sheet of paper 

must be deformed into a cone. The paper remains locally fl at everywhere in 

this process, just as it would if we rolled the paper up into a cylinder. The angle 

θ is called the “defi cit” angle. It is determined by the mass per unit length, m, 

of the string and is given by θ  = 8π(G / c2)m, where G is Newton’s constant, as 

long as θ is not close to 2π.

It should be emphasized that once the sides of the wedge are glued to-

gether, you can no longer tell where the wedge was. You would feel no jolt as 

you cross it, if you were to fl y around the string in a spaceship. In describing 

the situation you can take the wedge to be anywhere you fi nd convenient just 

by an appropriate choice of where you take the angle θ = 0 when you choose 

your coordinate system.

By making use of cosmic strings and their properties, Gott found a very 

clever way of producing a closed timelike curve. To see how this comes about 

we will make use of the following argument, which is slightly diff erent than 

Gott’s. We fi rst note that the missing wedge has the eff ect of allowing super-

luminal travel. Now consider a case where you have an infi nite straight string 

along the z axis whose position in the xy plane, in the inertial frame in which 

the string is at rest, is just off  the x axis at y = e where y = e is taken to be much 

side view
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end view

2 π − θ
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r

fig. 13.2. Space in the vicinity of a cosmic string.
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less than r (refer to the top half of fi gure 13.3). We take the tip of the wedge, 

with defi cit angle θ, to be at x = r,y = e, and oriented as shown in fi gure 13.3. 

Suppose that at time t = 0 you send a light pulse from planet A, located at the 

origin along the x axis, to planet B located at x = 2r so that the signal arrives at 

t = 2r / c. The signal will pass close by the string, but be unaff ected by it since 

the wedge is on the opposite side of the string. (Again we emphasize that the 

results do not depend on where we take the wedge. Our choice just makes the 

algebra and geometry easier to visualize.) At the same time a spaceship, travel-

ing at nearly the speed of light, sets off  for planet  B, following a semicircular 

path enclosing the string.

The center of the path is halfway between the planets and thus almost cen-

tered at the string, since e is very small. If it weren’t for the missing wedge, 

r r

y = - e

y = e

O

join

join

String 1

String 2

path of light pulse

path of 

spaceship

A B

fig. 13.3. Gott’s cosmic string time machine. The two strings are per-

pendicular to the page. String 1 moves to the left, while String 2 moves 

to the right. By starting at A and moving fi rst around String 1, and then 

around String 2, along the path shown, a space traveler can return to 

the same point in space and time.
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the spaceship would travel a distance πr along its path and arrive after the 

light pulse, which was slightly faster, but, more importantly, followed the 

shorter, straight-line path. However, the spaceship just jumps from one edge 

of the wedge to the other, and travels only a distance (π – θ)r. If θ is apprecia-

bly greater than π – 2, the linear distance covered by the spaceship will be less 

than that covered by the light pulse,5 and the spaceship will beat the light pulse

to planet B, arriving at time t ship
=

(π −θ )r

c
< t. (We remind the reader that we

are assuming that the spaceship travels at very nearly the speed of  light. Hence, 

we have approximated its velocity here by c.)

Since the ship has covered the same distance between A and B as the light 

pulse in less time, it has, in eff ect, undergone superluminal travel, traveling 

along the x axis at an eff ective speed u = 2r / tship > c = 2r / t. This is a situation we 

have encountered before. We know that spacetime intervals along the world-

line of a superluminal object are spacelike, and the sign of the time component 

is not Lorentz invariant. The spaceship travels forward in its own proper time, 

along a spacelike path. However, because the time order of two events which 

are spacelike separated is not invariant, one can fi nd a Lorentz frame where the 

two events occur simultaneously. Gott showed that if the string moves along 

the x axis relative to the frame in which the planets are at rest, then in that 

frame the arrival of the spaceship at planet B can occur simultaneously with 

its departure from planet A. The scenario is reminiscent of our discussion of 

tachyons back in chapter 6. 

However, we’ve not yet built a time machine. To do that we must arrange 

for the spaceship to return to its starting point in space and time so that it can 

aff ect its own past. That can’t be done with only a single cosmic string. If the 

spaceship just retraces its path along the semicircular curve, it turns out that 

no time machine is possible. 

Professor Gott had a clever idea, however. He considered a pair of infi -

nite parallel cosmic strings, each moving at a speed very close to the speed of 

light and perpendicularly to its length, but in opposite directions, so that they 

zoomed past one another. Let's call them string 1, moving on the path with 

y = e , and string 2, at y = –e. The vertices for the two wedges were at the re-

spective strings, and the wedges were oriented in the positive and negative 

5. This is just the condition that the distance along the curved path taken by the spaceship be 

less than the straight line distance taken by the light pulse, i.e., (π – θ)r < 2r. A slight rearrange-

ment then gives π – 2 < θ.
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y directions, respectively. (Refer to the entirety of fi gure 13.3; string 1 moves to 

the left and string 2 moves to the right.) 

Gott showed that one can now get a time machine by sending the spaceship  

around a closed path where it passes through the missing wedge for string 1 

on the way from A to B, and the wedge for string 2, moving in the opposite di-

rection, on the return trip. It can be arranged so that the spaceship arrives back 

at planet A simultaneously with its departure. The spaceship has now returned 

to the same point in space and time, that is, it has traveled on a closed timelike 

curve. This leaves open, at least in principle, the possibility of a time machine 

in which the spaceship travels into its own past. The scenario of the two mov-

ing cosmic strings is analogous to the case of two tachyon transmitters moving 

relative to one another.

Gott’s paper discussing this was published in Physical Review Letters. The edi-

tors of this very prestigious journal attempt to restrict publication to articles 

that they feel are so important they deserve especially rapid publication; for 

that reason, most of us in the profession are quite pleased if one of our papers 

gets accepted there. And the editors probably receive a number of forceful—or 

even vituperative—dissents from authors who have one of their pet papers 

turned down.

There were no such problems with Gott’s paper, which almost everyone 

would agree deserved its place in Physical Review Letters. Allen not only had a 

chance to read Gott’s paper but to hear him deliver an early lecture on the 

subject when he accepted an invitation to speak at the weekly Boston area 

cosmology seminar that rotates between Tufts, Harvard, and MIT. The Tufts 

cosmology group particularly looked forward to his lecture because of the ex-

tensive research on cosmic strings and their potential importance in cosmol-

ogy that was being conducted at Tufts, and because Allen, particularly, had a 

history of interest in the physics of time travel. Gott did not disappoint, deliver-

ing an excellent lecture in terms of both content and presentation.

Since the energy density of cosmic strings is positive, they are not “exotic” 

in the technical sense, though you might well think they are somewhat bizarre. 

As in the previous models, the cosmic strings in Gott’s time machine escape 

the strictures of Hawking’s theorem only because of their infi nite length. (In 

particular, Hawking’s theorem forbids the construction of a time machine us-

ing fi nite loops of cosmic string.) However, Gott’s idea prompted more in-

terest, since theory suggested that, although one could not manufacture an 

infi nitely long cosmic string on demand, still, the “ingredients” for a time ma-

chine might exist. In this situation, even though they are being produced at a 
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fi nite time after the big bang, the fact that they cannot end will force some of 

them to have infi nite length (provided that the universe is infi nite in size, as 

suggested by current measurements). If strings were produced in the very early 

universe, a few at least could still be around. According to theory, there might 

now be only a small number in our whole visible universe. The chances of two 

of them being, randomly, in the right relation to one another to produce a time 

machine doesn’t seem promising, to put it mildly. Moreover, they must be pro-

duced with very high speeds, and therefore require a lot of kinetic energy in 

addition to their intrinsic mass-energy per unit length. Even if they are possible 

in principle, looking for a Gott time machine might be like waiting around at 

the swimming pool to see a diver pop spontaneously out of the water.
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14
Epilogue

“The time has come,” the walrus said,

“To talk of many things.”

lewis carroll, Through the Looking-Glass 

and What Alice Found There

If you can look into the seeds of time,

And say which grain will grow, and which will not,

Speak.

william shakespeare, Macbeth

Since we have now come to the end of our 

journey through time and space, let’s 

summarize where we’ve been, where we are, and what the prospects are for 

the future. We’ve seen that Einstein’s equations of general relativity seem to al-

low for the possibility of faster-than-light shortcuts and backward time travel. 

However, we’ve also seen that there appear to be severe restrictions on the 

actual realization of wormholes, warp drives, and time machines, especially 

when we consider the laws of quantum mechanics. Given the existing research, 

our view is that the construction of such objects seems to be extremely unlikely, 

at least in the forms suggested to date. This is a rather depressing conclusion 

if we someday wish to cross the enormous gulf of space between the stars, 

and “boldly go where no one has gone before.” But how trustworthy can our 

conclusions be, given our present state of knowledge? How well can we predict 

twenty-third-century possibilities, on the basis of a twenty-fi rst-century knowl-

edge of physics? Might we not expect future discoveries to overturn even some 

theories that we presently regard as fi rmly established, as has happened often 

in the history of science? Here we off er a few relevant speculations.
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An effi  cient method of space travel could be an important issue for the sur-

vival of the human race. For example, we know that asteroid impacts have oc-

curred numerous times in the history of our planet. One such impact sixty-fi ve 

million years ago quite probably ended the reign of the dinosaurs. We know 

that if we remain on this planet long enough, eventually another such cata-

strophic impact will happen and possibly herald the end of our species. But it 

could happen a million years from now, or in the next ten years; we just don’t 

know. If we stay on only one planet, we risk annihilation due to this or some 

other global catastrophe. So it would seem that it should be a fundamental 

goal for us to develop the capability to get off  the planet (and out of the solar 

system).

On the other hand, consider the times in the earth’s history when techno-

logically advanced societies have come into contact with less advanced ones. 

The outcome has usually not been a happy one for the latter. Hence, from one 

point of view, the huge distances between the stars and the technological ob-

stacles to quick interstellar travel could be a blessing rather than a curse. It 

might prevent the aggressive inhabitants of the galaxy (including us—the Star 

Trek “Prime Directive” notwithstanding) from wreaking havoc on the peace-

ful ones.

What is the likelihood that the conclusions we have reached will stand 

the test of time, particularly the “no-go” results? This is diffi  cult to say, but 

we can make some informed guesses. We have seen over and over again in 

the history of physics how new theories have replaced earlier ones. Relativity 

and quantum mechanics replaced Newtonian mechanics with an entirely new 

worldview. Might not similar revolutions overthrow our current conclusions? 

However, it is important to remember that the new theories must agree with the old 

theories in the regime where the old theories are known to agree with experiment. Relativ-

ity and quantum theory reduce to Newtonian mechanics for weak gravitational 

fi elds, speeds that are small compared to that of light, and sizes that are very 

large compared to those of microscopic objects. We expect deviations from 

the old theories only in domains where the original theories are no longer 

applicable.

When applying the quantum inequalities to wormhole and warp drive spa-

cetimes, we assume that the fl at spacetime inequalities can be used in curved 

spacetime, if we restrict our sampling time to be small compared to the radius 

of curvature of the spacetime and the distance to any boundaries. On that scale 

spacetime is approximately fl at and one “doesn’t notice” the curvature or the 

presence of boundaries. This is a reasonable assumption in accord with the 
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principle of equivalence in general relativity. That is like saying that in order to 

reliably predict the outcome of a local laboratory experiment on earth, we don’t 

need to know that spacetime is curved on the large-scale or that there might 

be a boundary (e.g., like a Casimir plate) many light-years away. Were that not 

the case, we would notice deviations from the incredibly accurate predictions 

of quantum fi eld theory on laboratory scales, which in fact we don’t observe. It 

is hard to see how the validity of our “locally fl at” assumption would be called 

into question at some time in the future. Given that, then we are essentially just 

using experimentally tested quantum fi eld theory on the scales where we know 

it to be true, in order to obtain our bounds on wormholes and warp drives. 

So it’s rather hard to see how to avoid (possibly large) negative energy that is 

restricted to very small regions of space or time.

So if there are ways around our conclusions, what might they be likely to 

entail? The quantum inequalities are strong restrictions, but they have been 

proven to hold for free fi elds. If no such strong restrictions exist for interacting 

quantum fi elds, then that might be a way around our conclusions. Although 

the situation is still rather murky as of this writing, we feel it unlikely that this 

will be the case. Our bet is that while interacting fi elds might not obey the 

usual quantum inequalities, they probably satisfy some kind of similar con-

straints. However, at present we have no proof.

Another possibility is that the dark energy that drives the accelerated expan-

sion of the universe turns out to be exotic material, in the sense of violating the 

weak or null energy conditions (or the corresponding averaged conditions). 

Then we could have exotic matter all around us. Although, again as of this 

writing, this is not ruled out by observation, we would be quite surprised if it 

were the case. On the other hand, the very existence of dark energy came as a 

big surprise to most physicists and astronomers.

As for time travel, it seems that, in view of the “slicing and dicing” eff ect of 

wormhole time machines in the many worlds interpretation, one is stuck with 

something like the banana peel mechanism if one is to avoid time travel para-

doxes. However, we fi nd it extremely disturbing that, in order to preserve the 

laws of quantum mechanics, the construction of a time machine in the future 

can aff ect one’s ability to accurately predict the results of experiments in the 

present! Not much work is done on time travel these days, because the general 

feeling in the relativity community is that we’ve gone about as far as we can go 

without a quantum theory of gravity.

One does have to be careful in making predictions about future theories 
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and technologies on the basis of present ones. Consider the following example 

(provided by Ken Olum). Suppose we were given only the laws of Newtonian 

mechanics and no new technology. We would then probably say that it is physi-

cally impossible, even in principle, to travel interstellar distances in a human 

lifetime. Humans could not survive the accelerations needed to cover such dis-

tances in their lifetimes, given the assumptions of absolute space and time in 

Newton’s theory. However, that conclusion would be wrong.

With the advent of special relativity, and the phenomenon of time dilation, 

we learned that the passage of time on a spaceship traveling near the speed of 

light can be vastly diff erent from the passage of time on earth. As for the ac-

celerations required to reach these speeds, in principle it would be possible to 

accelerate at a constant acceleration of 1g for a year or two, in order to achieve 

near-light speeds. We emphasize here that the laws of physics do not prevent you 

from traveling as close to the speed of light as you like. Relativistic time dilation 

does, in principle, provide a way of bridging the distances between the stars.

Of course, in practice, there are a whole lot of other problems, for example, 

you are generally stuck coming back a long time after everyone you know is 

dead. That makes it a bit tough to organize any kind of galactic federation, 

unless you are a very patient and long-lived species. One possibility might be 

to send robots instead. Another problem is that once your starship has been 

accelerated up to near-light speed, you have a big shielding problem to worry 

about. In the frame of the ship, you are at rest while interstellar atoms and dust 

whizz past (and through!) you at enormous speeds. For you, it’s like sitting 

in the middle of a particle accelerator. The protective shielding needed would 

likely dramatically increase the mass of your ship.

The previous discussion has centered on the diff erence between what the 

laws of physics allow and what is possible in engineering. But people yearn 

for a quick way to get to the stars. In this book, we’ve argued that travel to the 

stars via some sort of superluminal travel, the way people are used to seeing it in 

science fi ction, is what appears to be problematic.

Another point (credited to Doug Urban of Tufts) is that it is possible for 

us to make quantum-mechanical matter and energy in the laboratory, whose 

properties we might not have guessed based solely on the laws of classi-

cal physics. Examples are liquid helium, which can crawl up the walls of its 

container; Bose-Einstein condensates, a new state of matter that can exhibit 

strange quantum mechanical behavior on a macroscopic scale; and lasers, 

which are now routinely used in many areas of our technology. Although the 
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laws of quantum mechanics and relativity reduce to those of Newtonian phys-

ics at large scales and low velocities, the former can still be used to produce 

eff ects that are tangible on human scales.

What kind of frontiers might lie ahead? Physicists are currently investigat-

ing higher energies and the related probing of ever-smaller scales of space and 

time. Currently, two leading candidates for a quantum theory of gravity are 

string theory and loop quantum gravity.1 A theory of quantum gravity could, 

and many believe would, be as scientifi cally revolutionary as quantum mechan-

ics, but will it aff ect humanity to the same extent? The energy scale of quantum 

gravity is so enormous that we may not be able to manipulate its eff ects in the 

near future, if ever.

However, if that is not the case, we might imagine the following scenario. 

The unknown laws of quantum gravity will presumably describe, among other 

things, the behavior of large amounts of matter compressed into almost in-

conceivably tiny regions of space. Perhaps these laws incorporate natural ways 

to eff ectively circumvent or supersede energy conditions. (We might expect 

the laws of quantum gravity to have this property if we believe that they will 

ultimately resolve the problem of singularities in spacetime.)

Imagine, for example, a super-civilization manipulating quantum-

 gravitational matter and energy into long string-like negative energy confi gu-

rations, which might even satisfy the demands of the quantum inequalities. 

These negative energy-type strings might serve as the source of exotic matter 

for building one of Matt Visser’s cubical wormholes (discussed in chapter 9). 

Recall that one of the advantages of this type of cubical wormhole is that ex-

otic matter is confi ned to the edges of the cube. This means a human observer 

could pass through a face of the cube and through the wormhole without ever 

directly encountering the exotic matter. Such a device could provide a gateway 

to the stars. Would the laws of quantum gravity then allow us to combine many 

of these together to make a “Visser ring” of wormholes into a time machine? 

If the laws of quantum gravity do not allow wormhole time machines, might 

they allow other types? Or do these laws forbid time machines altogether, en-

forcing Hawking’s chronology protection conjecture? At this juncture we don’t 

1. For more on these theories, see Brian Greene, The Elegant Universe (New York: W. W. Norton, 

2003); Lee Smolin, Three Roads to Quantum Gravity (New York: Basic Books, 2001); and Lee Smolin, 

The Trouble with Physics (Boston: Houghton Miff lin, 2006). A nice article on loop quantum gravity is 

Lee Smolin, “Atoms of Space and Time,” Scientifi c American, January 2004.
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know. But let us emphasize that the discussion in the last two paragraphs is 

just pure speculation. Presently, we have no reason to believe the above scenario 

is possible.

By this time, you may feel that your authors are just old curmudgeons who 

just want to ruin everyone’s fun.2 However, it might surprise you to learn that we 

are both avid Star Trek fans. Like you, perhaps, we think that the universe might 

be much more exciting with the existence of wormholes and time machines. 

But it’s precisely because we feel that way that we are cautious. We adopt the 

maxim that one should be most skeptical about that which one would most 

like to believe. As Richard Feynman once put it, “The fi rst principle is that you 

must not fool yourself—and you are the easiest person to fool.” We also abide 

by Carl Sagan’s famous quote, “Extraordinary claims require extraordinary 

proof ”—and the burden of proof lies with the claimant. As scientists, it’s our 

job to understand the universe as it is, not as how we might wish it to be. We 

must always keep in mind that the universe is under absolutely no obligation 

to fulfi ll our hopes and desires. However, we would argue that, in any case, the 

new insights that have been gained about time and space, matter and energy, 

have made our journey worthwhile.

2. In fact, we have already been so accused by E. W. Davis and H. E. Puthoff  (in CP813, Space 

Technology and Applications International Forum—STAIF 2006, edited by M. S. El-Genk [Melville, NY: 

American Institute of Physics Press, 2006]): “The Quantum Inequalities (QI) Conjecture is an ad 

hoc extension of the Heisenberg Uncertainty Principle. [Authors’ note: Not true—the quantum 

inequalities are derivable from quantum fi eld theory, so they are not a “conjecture.”] They were 

essentially derived by a small group of curved spacetime quantum fi eld theory specialists for the 

purpose of making the universe look rational and uninteresting [emphasis added] . . . This small group 

is prejudiced against faster-than-light motion, traversable wormhole and warp drive spacetimes, 

time machines, negative energy, and other related issues having to do with the violation of the 

second law of thermodynamics. This group accepts the reality of the theoretical and proven experi-

mental existence of negative energy density and fl uxes, but they don’t accept the consequences of 

its various manifestations in spacetime.” It should be mentioned that this is the same H. E. Puthoff  

who, together with Russell Targ, declared Uri Geller a genuine psychic in the 1970s. If you have 

never heard of Uri Geller, we suggest The Truth about Uri Geller, by James (“the Amazing”) Randi 

(Amherst, NY: Prometheus Books, 1982.) We apologize for exploring the hypothesis that the uni-

verse looks rational. It appears that this is a concern that Davis and Puthoff  do not share.
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Appendix 1

Derivation of the Galilean Velocity Transformations

The Galilean velocity transformations can be easily gotten from the Galilean 

coordinate transformations in the following way. Recall from chapter 2 that 

the latter are given by

x' = x – v t

y' = y 

z' = z 

t' = t.

Now suppose a person walks from a point with coordinate x1' in the train’s 

reference frame to the point with coordinate x2' in the time interval between 

t1' and t2'. Thus, x' changes by x2' – x1' while t' changes by t2' – t1'. We will make 

use of a commonly used notation with which many readers will be familiar. 

We represent  x2' – x1' by the symbol Δx'. The symbol Δ is the Greek letter Delta, 

and Δ x' is read as “Delta x prime,” or, the “the change in x prime.” That is, Δ x' 

is a single symbol that is just a convenient shorthand for the quantity x2' – x1'; it 

is not x' multiplied by some mysterious quantity Δ. Similarly Δt' represents the 

change in t'. Thus, Δt' = t2' – t1'.

Let Δ x be the distance the person moves in the time interval Δt (recall that 

we assume to be equal to Δt') along the track. For generality, let us include 

the possibility that the person also moved in the other two directions, say by 

amounts Δy' = Δy and Δ z' = Δ z. Then the Galilean coordinate transformations 

give us

Δ x' = Δ x – vΔt

Δy' = Δy 

Δ z' = Δ z.

Now simply divide the left-hand side of each equation by Δt', and divide the 

right-hand sides by Δt (remember that Δt' = Δt, so we are really dividing both 

sides by the same quantity). Then we get
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 is just the distance the person walks on the train divided by the time

interval as measured on the train, that is, the speed u' relative to the train.

Similarly Δ x

Δt
 is the distance the person travels with respect to the track in the

time interval Δt, the time interval as measured by clocks in the track frame 
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Recall that u',u represents only the parts of the motion that are parallel to the 

track. If the person moves in the other two directions as well, then using a 

similar argument to the one above, we have that
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Where Vy',Vy,Vz',Vz are the velocities in the y',y,z',z directions, respectively.
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Appendix 2

Derivation of the Lorentz Transformations

We are going to derive the Lorentz transformation equations, using a derivation 

that is essentially the same as one originally given by Einstein. As you know, 

the transformations give the coordinates of an event in a reference frame S' in 

terms of the coordinates in a diff erent inertial frame S. As usual we will sup-

pose that S' is moving in the positive direction along the common x and x' axes 

with speed v, and the origins of the two frames coincide at t = t' = 0. For the 

moment we will take the event to occur on the x axis so that its location in spa-

cetime is specifi ed by coordinates (t,x) in S and (t',x') in S'. To satisfy the prin-

ciples of relativity, the transformation equations must ensure that a light signal 

moving  in the positive direction with worldline given by x = c t, or x – c t = 0 

in S moves along the worldline x' – c t' = 0 in S'. This will be true if the transfor-

mation equations are such that

 x' – c t' = a(x – c t). (1)

Here, a is a constant. That is, it does not depend on any of the coordinates in 

the equation, although it will depend on v. Equation 1 guarantees that  x' – c t' = 0 

if x – c t = 0, as long as a is not infi nite. The principle of relativity also requires 

that a light signal moving in the negative direction in S, that is, along the 

worldline – x = c t or x + c t = 0, have speed c as seen in S'. This can be guaranteed 

if we require that

 x' + c t' = b(x + c t), (2)

where again b is independent of the coordinates, and b is not infi nite. We can 

introduce two more convenient constants, a and b. We fi rst add equations 1 

and 2 to get

 x' = ax – bc t (3)

where

 a =
a + β

2
 (4)
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and

 b =
a – β

2
. (5)

We then subtract (2) from (1) to obtain

 c t' = ac t – bx. (6)

If we look at equations 3 and 6, we see that fi nding a and b will solve our 

problem. They are the two coeffi  cients in the transformation equations that 

will allow us to determine the coordinates of an event in S' in terms of its coor-

dinates in S, that is, the coeffi  cients in the Lorentz transformations.

To make some further progress, let’s observe that the origin of S' is 

located at x' = 0. From equation 3, its position in S is thus at x = bc

a
t. Since it

starts at  x = 0 and moves with speed v relative to S, its position in S is also

given by x = vt. Comparing the two expressions for x we see that

 v = bc

a
. (7)

Next, consider a meter stick at rest in S', with one end at x' = 0 and one end 

at  x' = 1 m. Let’s fi nd its length as measured by observers in S. Since the meter 

stick is moving, to determine its length they will have to be careful to measure 

the position of its two ends at the same time, which, of course, for them means 

the same value of t. One end of the meter stick is at the origin of  S', which we 

know passes the origin of  S at  t = t' = 0. So to fi nd the length of the meter stick 

in S we have to fi nd out where the point x' = 1 m is when t = 0. That’s easy to 

do. We can just look at equation 3 and see that, when t = 0 and x' = 1 m,

 x = (1m) / a. (8)

The fact that x ≠ 1 is an example of one of the well-known consequences of 

special relativity, namely, that moving meter sticks appear shortened; this is 

discussed in more detail in appendix 5. But this is relativity, where all inertial 

frames, and in particular S and S', are created equal. Therefore, if the transfor-

mation equations are to respect the principles of relativity, they must ensure 

the same thing happens for a meter stick running from x = 0 to x = 1 m when 

it is observed in S'. Observers in S' will say that, in order to make a correct 

measurement of the length of what is, for them, a moving meter stick, they 

must measure the position of its two ends simultaneously, that is at the same 

value of t'.
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This time we have to do a little more work. We know the two origins pass 

one another at t = t' = 0. So at t' = 0, one end of the meter stick in S will be at 

x' = 0. Equation 6 tells us that at t' = 0,

 x = ac t / b. (9)

But we don’t know t. However, we can eliminate t by using equation 3 to write 

t = (ax – x') / bc. If we substitute this expression for t into equation 6, with t' = 

0, we obtain x = (a2 / b2)(x – x' / a). In this expression, collect the terms with x on 

one side, multiply both sides by –b2 / a2, and note from equation 7 that b2 / a2 = 

v2 / c2. One is then left with x' / a = [1 – (v2 / c2)]x or x' = a[1 – (v2 / c2)]x. Then, mul-

tiplying the right side by a / a, we get

 x' = a2[1– v2 / c2](1m) / a, (10)

since x = 1 m at the other end of the meter stick with one end at the origin 

of the unprimed system. Now compare equations 8 and 10. Because a meter 

stick in the unprimed system should look the same to observers in the primed 

system as the other way around, the principles of relativity require that equa-

tion 1 must be identical to equation 8, with x replaced by x'. We conclude that 

a2(1 – v2 / c2) = 1, or

 a = 1

1− v2 /c2

.
 (11)

Thus, we have determined one of the two coeffi  cients appearing in the 

Lorentz transformation equations for x and t. The other coeffi  cient, b, is then 

immediately given, in terms of a, by equation 7, as

 b = va/c = 1

1− v2 /c2

v

c
. (12)

If you substitute equations 11 and 12 into equations 3 and 6, you will recover 

the Lorentz transformation equations for x and t given in chapter 3.

Adding and subtracting equations 4 and 5, we have that a = a + b and b = 

a – b. Since v < c, neither a nor b is ever infi nite, and hence, neither is a nor b. 

Thus, it follows from equations 1 and 2 that the transformation equations in-

deed guarantee that if a particle is moving in the positive or negative x direction 

in S with speed c, this is also true in S'. That is, the Lorentz transformations 

equations do indeed leave the speed of light invariant. However, since neither 

a nor b = 1, then unless c t – x = 0, we will have c t' – x' ≠ c t – x, and similarly for 
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c t + x. However, ab = (a + b)(a – b) = a2 – b2 = 1, as can be easily confi rmed from 

equations 11 and 12. We can write ((c t')2 – x'2) = (c t' – x')(c t' + x') = ab (c t – x)

(c t + x), from equations 1 and 2. Since ab = 1, therefore, the equation

 (c t')2 – x'2 = (c t)2 – x2 (13)

is valid for any values of t and x.

So far, we have considered only light signals propagating along the x axis. 

To discuss signals propagating in arbitrary directions, we must introduce the 

transverse coordinates, y and z. Since S' is moving in the x direction, there is no 

reason these coordinates should be any diff erent in S' than in S, and so we take 

the last two members of the set of Lorentz transformations to be

 y' = y (14a)

and

 z' = z  (14b)

Let’s now consider a light pulse emitted from the origin at t = 0 in S in an 

arbitrary direction. Its position at time t will be given by

 x2 + y2 + z2 – (c t)2 = 0, (15)

where

 r = x2 + y2 + z2  (16)

is the spatial distance from the origin in the inertial frame S. The Lorentz trans-

formations imply that x2 – (c t)2 = x'2 – (c t')2. Together with equations 14a and 

14b, this allows us to rewrite equations 15 as

x'2 + y'2 + z'2 – (c t')2 = 0.

We see that the Lorentz transformations guarantee that the light pulse also 

propagates outward in the radial direction with speed c in S' as required by the 

principles of relativity.

Recall that we took a and b in equations 1 and 2 to be constants, that is, in-

dependent of the spacetime coordinates. It follows that the coeffi  cients in the 

transformation equations, which are constructed from a and b, are likewise 

constants, meaning that the coordinate transformations are linear equations. 

It thus follows from Einstein’s derivation that they are the unique set of linear 

equations consistent with the principles of relativity.

However, what if one allows a and b to be coordinate dependent? Equa-
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tions 1 and 2 would still guarantee that the velocity of light was the same in all 

inertial frames, because of the factors of x ± c t on the right sides of the equa-

tions. Is there any reason to prefer linear transformation equations?

We now have one very good reason for doing so—in fact, it is the best of all 

reasons for believing any physical theory. There is an immense body of experi-

mental data from high- energy physics experiments supporting the validity of 

the principles of relativity with the linear Lorentz transformation equations 

incorporated. But of course these experiments had not yet been done at the 

time when Einstein was developing special relativity.

However, there was a compelling argument that, one suspects, caused 

Einstein to take the linearity of the transformation equations more or less for 

granted. There is a fundamental assumption that the laws of physics are the 

same everywhere and at all times. Physicists phrase this by saying that physi-

cal laws are symmetric under translations, that is, under displacements of the 

coordinate system, in either time or space.

What are the grounds for assuming the existence of these symmetries? It is 

certainly the simplest assumption to make, and perhaps the most aesthetically 

pleasing. But while it often seems to be true, we have no guarantee that nature 

will choose either to be simple or to appeal to human aesthetics.

In particular, the laws of conservation of momentum and of energy, prob-

ably the two most familiar conservation laws, can be derived just from the as-

sumptions of invariance under translations in space and time, respectively. The 

existence of those two great conservation laws thus provides powerful evidence 

that physical laws do not single out any particular region of space or time as 

being diff erent from any other. If that is true, the coordinate transformation 

equations should be linear, and thus, the Lorentz transformations are singled 

out from any other possibilities.
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Appendix 3

Proof of the Invariance of the Spacetime Interval

Note: You already know this if you worked through appendix 2, where we de-

rived the Lorentz transformations. Here we give the simpler argument needed 

if one assumes the transformation equations to begin with.

We verify that the following equation is true for the coordinates of a given 

event in two diff erent inertial frames with relative velocity v:

x2 – (c t)2 = x'2 – (c t')2.

We use the Lorentz transformations:

t ' =
t − vx

c2

1− v2

c2

, x' = x − vt

1− v2

c2

, y' = y, z' = z.

To begin, substitute the expressions for x' and t' in terms of x and t from the 

Lorentz transformations into the fi rst equation.

x2 − ct( )2

= x − vt

1− v2

c2

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

2

− c

t − vx

c2

1− v2

c2

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

2

You must then carry out the process of squaring the resulting expressions, mak-

ing use of the good old result for the square of a binomial, (a + b)2 = a2 + 2ab +

b2, and gather like terms together over the common denominator,

 

1

1− v2

c2

.

x2 − ct( )2
= x2 − 2xvt + v2t 2

1− v2

c2

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟

− c2

t2 − 2t
vx

c2
+ v2 x2

c4

1− v2

c2

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟
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x2 − ct( )2
=

x2 − 2xvt + v2t 2 − c2t2 + 2tvx − v2

c2

⎛
⎝⎜

⎞
⎠⎟

x2

1− v2

c2

Next cancel the –2xvt and 2xvt terms, and collect the x2 and the t2 terms, in the 

numerator.

x2 − ct( )2
=

x2 − v2

c2

⎛
⎝⎜

⎞
⎠⎟

x2 + v2t 2 − c2t 2

1− v2

c2

Now factor the x2 and the t2 terms, pulling out a factor of –c2 for the latter 

terms:

x2 − ct( )2
=

1− v2

c2

⎛
⎝⎜

⎞
⎠⎟

x2 − 1− v2

c2

⎛
⎝⎜

⎞
⎠⎟

c2t 2

1− v2

c2

.

Finally, if we cancel out the factors of  
1

1− v2

c2

 out of the numerator and denomi-

nator, we have

x2 – (c t)2 = x2 – c2 t2.

So you fi nd that the right-hand side of the original equation has reduced 

to the corresponding equation in the earth frame, that is, the left-hand-side. 

Since the equation x2 – (c t)2 = x'2 – (c t')2 is true in general, it is true when the 

quantities on the left and right side both equal zero, which you may recall is the 

equation for a light ray. So, if the coordinates in 2 diff erent reference frames 

are related by the Lorentz transformations, then a signal that moves with speed 

c in one frame is also seen to move with speed c by observers in the other. Thus, 

observers in all inertial frames will observe that light travels at speed c rela-

tive to their own inertial frame, that is, the inertial frame in which they are at 

rest. This agrees with the outcome of the Michelson-Morley experiment and 

implies that the seemingly obvious Galilean transformations are actually an 

 approximation—albeit a very good one—for speeds much less than c.
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Appendix 4

Argument to Show the Orientation of the 
x',t' Axes Relative to the x,t Axes

In fi gure A4.1, let c t',x' be the spacetime axes of an observer O' moving with 

speed v relative to the observer O in the frame with the axes c t,x. We are going to 

show that the primed axes are both rotated inward (i.e., toward the worldline of 

the light ray shown in the fi gure) by the same angle. That is, in the fi gure above, 

angle a is equal to angle b.

The c t' axis coincides with the worldline of O', which is inclined to the c t axis 

by the angle a. The worldline of the light ray (moving in the positive x and x' 

directions) lies exactly halfway between the c t and x axes. That is, the c t and x 

coordinates of any point on the light ray are equal, since, as we saw earlier, the 

light ray is characterized by x – c t = 0. From the invariance of the speed of light, 

the light ray must also lie exactly halfway between the c t' and x' axes as well, 

since x' – c t' = 0 is the equation of the light ray in the primed frame. Therefore, 

the c t' and x' coordinates of any point on the light ray must also be equal. A 

little time spent looking at fi gure A4.1 should convince you that this is true if 

the c t',x' axes are oriented as shown in the fi gure, with angle a equal to angle b. 

Note in particular that this could not be true if the c t' and x' axes formed a right 

angle with one another.

For a more rigorous proof, one can use the Lorentz transformation equat- 

ions.

x' = x − vt

1− v2

c2

t ' =
t − vx

c2

1− v2

c2
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Refer to fi gure A4.2. The c t' axis corresponds to the line x' = 0 (just like the 

c t axis corresponds to the line x = 0). Setting x' = 0 in the fi rst of the Lorentz 

transformation equations above, we see that the equation of the c t' axis (i.e., 

the worldline of observer O') in the unprimed frame is just x = vt. Divide both 

sides of this equation by c t to get x / (c t) = v / c. Notice that the left-hand side of 

our last equation is just the slope of this line (i.e., the c t' axis), measured with 

respec t to the vertical c t axis.

Similarly, the x' axis corresponds to the line c t' = 0 (just like the x axis cor-

responds to the line c t = 0). Setting t' = 0 in the second of the Lorentz transfor-

mation equations above, we get t = vx / c2. Multiply both sides of this equation 

by c and divide both sides by x to get c t / x = v / c. The left-hand side of the last 

equation is the slope of the x' axis (i.e., the line c t' = 0) with respect to the hori-

zontal x axis. Notice that the right-hand sides of our two slope equations are 

the same, namely, v / c. Therefore, since the slope of the c t' axis with respect to 

the c t axis and the slope that the x' axis makes with respect to the x axis are both 

equal to v / c, the angles a and b in the fi gure above must be equal.

a

b

c t

x

c t’

x’

c t 
= x

c t
’ =

 x
’

light ray

fig. a4.1. A rotation in spacetime. Because 

of the geometry of spacetime (recall the pres-

ence of a minus sign in the spacetime inter-

val), a coordinate transformation rotates both 

the time and space axes inward, that is, toward 

the path of the light ray in the fi gure. 

c t  axis

x  axis

c t’  axis

a

x

c t

c t  axis

x  axis

x

c t

x’  axis

b

fig. a4.2. Rotation of the time axis 

and space axis, respectively.
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Appendix 5

Time Dilation via Light Clocks

The previous derivation for time dilation, given in chapter 5, employed the 

Lorentz transformations. The following derivation essentially just uses the two 

principles of relativity and the Pythagorean theorem. Consider the following 

device, known as a “light clock”: a rectangular box whose bottom and top are 

mirrored. In the bottom of the box is a fl ash gun that emits a photon (a particle 

of light) toward the top mirror. The photon, moving at speed c, travels the ver-

tical distance d from the bottom to the top of the box, where it is refl ected and 

returns to the mirror at the bottom, to begin the cycle all over again. The time 

interval for one round-trip of the photon will be regarded as one “tick” of this 

clock and is given by 2d / c. (The above description applies to a frame in which 

the clock is at rest.)

Now consider a series of these light clocks, which are synchronized with 

one another in the earth frame, S(earth). At time  t = 0, another light clock, 

which is at rest in S'(ship) and moving with speed v, relative to the earth frame, 

passes one of the clocks in S(earth) just at the moment when the clock in 

S'(ship) reads t' = t = 0. This situation is depicted in fi gure A5.1. We are inter-

ested in the time interval in each frame between the following two spacetime 

events: event 1, a photon is emitted from the bottom of the ship’s light clock; 

and event 2, the photon is subsequently received at the bottom of the same 

light clock. Note that in S'(ship), the time between these two events can be 

measured by a single clock, because in S'(ship) both the emission and reception 

of the photon occur at the same place. In our example above, t' is therefore the 

proper time. We wish to calculate the time interval between these two events as 

measured in S'(ship) and S(earth). The observer in S'(ship) will see the photon 

go up and back, returning after a time t1' = 2d / c. What corresponding time, t, 

will the observers in S(earth) measure?

For the observers in S(earth), the emission and reception of the photon 

occur in diff erent places, because the light clock in S'(ship) is moving relative 

to observers in S(earth). Therefore the time (call it t1) between the two events 
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 cannot be measured by a single clock in S(earth), but is deduced from the mea-

surements of two clocks that are separated and synchronized in S(earth). Ob-

servers in both frames must agree that the following 3 events occur: the photon 

is emitted from a fl ash gun near the bottom mirror of the ship’s clock, it strikes 

the top mirror of the same clock and is refl ected, and the photon is received at 

the bottom mirror of the ship’s clock. Also recall that the principles of relativ-

ity require that observers in each frame measure the speed of light to be c. From 

fi gure A5.1, we see that observers in S(earth) must therefore see the photon 

travel along a diagonal path. They will see this because the mirror is no longer 

in its original position, but has moved a distance vt1 / 2 to the right, according 

to the S(earth) observers, by the time the photon reaches the top mirror. So in 

order for observers in both frames to see the photon hit the top mirror, it must 

travel along the diagonal path in S(earth). The (square of the) distance that the 

photon travels along the diagonal path to reach the top mirror at time t = t1 / 2, 

is simply given by the Pythagorean theorem: 

(ct1 / 2)2 = (vt1 / 2)2 + d2.

d

d

v t

c t /2 c t /2

t = 0 t = t /2 t = t

d

v t /2 v t /2

S(earth)

v

fig. a5.1. Time dilation with light clocks. One “tick” of a light 

clock on the ship as measured by synchronized light clocks on the 

earth.
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Now, solve this for d to get

d =
t

1

2
c2 − v2

.

Pull out a factor of c from under the square root to obtain

d =
ct

1

2
1− v2

c2
.

(The analysis is the same for the second half of the photon’s trip.) Recall that 

the time for one tick as measured in S'(ship) was given by t1' = 2d / c. Rewriting 

this in terms of d gives

d =
ct

1
'

2
.

If we set the right-hand sides of these two formulas for d equal to one another, 

and cancel out the factors of  
c
2

, we get

t
1
' = t

1
1− v2

c2
.

This is the formula for time dilation that we found previously.

Note that our result is a direct consequence of the fact that observers in both 

frames must measure the speed of light to be c. Since the light travels a greater 

distance in S(earth), but at the same speed as in S'(ship), the round-trip time mea-

sured in S(earth) must be longer than that measured in S'(ship).

By the fi rst principle of relativity, either set of observers is entitled to say that 

they are at rest and the observers in the other frame are the “moving” ones. 

If we are the observers in S'(ship), then we would consider a series of clocks 

at rest and synchronized in S'(ship) and a single light clock in S(earth) that is 

moving with velocity –v, relative to S'(ship). Now we would see the light clock 

in S(earth) as the one in which the photon makes the longer, diagonal trip. 

Hence, we would conclude that it is the clocks of S(earth) that are running 

slow, compared to our clocks.

You might be tempted to say that this eff ect is just hocus-pocus, the result of 

some peculiarity of the light clock we assumed in our discussion. However, we 

know this is not true, since the derivation using the Lorentz transformations 

made no assumption about a specifi c kind of clock being used and provided 
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the same predictions. In fact, the time dilation eff ect of special relativity must 

apply to all clocks, regardless of construction. Let’s see what would happen 

if that were not the case. Suppose we have a set of clocks of diff erent types in 

an inertial frame, and we very gently and gradually accelerate them all up to 

some common constant velocity. If, subsequently, the clocks no longer tick at 

the same rate relative to each other, then we could establish the inertial frame 

in which their ticking rates do all agree as a “special” inertial frame, which is 

absolutely at rest. This would violate the principle of relativity, which says that 

all inertial frames are equivalent.

Length Contraction

Another frequently discussed consequence of special relativity is that not only 

do moving clocks run slow but moving meter sticks contract. This will not be 

of direct relevance for us, but for the sake of completeness—and since it can 

be obtained very easily from time dilation—we’ll discuss this phenomenon of 

“length contraction” briefl y.

Consider a stick at rest in S(earth) whose length as measured in that frame 

is L. (The length of an object measured in a frame in which the object is at rest 

is called its “proper length.” As in the case of proper time, the term “proper” 

here does not mean “true” or “correct.”) Let the left end of the stick be located 

at  x = 0 and its right end at x = L. The light clock in S'(ship) travels to right with 

speed v as seen in S(earth). Let the time [as measured in S(earth)] at which the 

center of the clock passes the left end of the stick be t = 0 and the time when it 

passes the right end of the stick be t = t1. So the length of the stick in S(earth) 

can be written as L = vt1, that is, as measured in S(earth) the clock travels a 

distance L in a time t1.

Now let’s consider the situation from S'(ship). In this frame, the stick moves 

to the left at speed v. The left end of the stick passes the center of the clock in 

S'(ship) at t' = t = 0. The right end passes at t' = t'1. Note that the two events, that 

is, the left and right ends of the stick passing the center of the clock in S'(ship), 

occur at the same place in S'(ship). Hence, the time between these events can 

be measured by a single clock in S'(ship), and so the time t' is the proper time. 

The length of the stick as measured in S'(ship) is then L' = vt'1. Using the

time dilation formula, t
1
' = t

1
1− v2

c2
, we can write this as L' = vt

1
1− v2

c2
. But

we know from our previous discussion that vt1 is just equal to L, so we have
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L' = L 1− v2

c2
.

This is the phenomenon of “length contraction,” which is that the length of an 

object, as measured in a frame where the object is moving, is shorter than its

length as measured in a frame where it is at rest, by a factor of 1 − v2

c2
. As with

time dilation, the eff ect is symmetrical in that observers in each frame will say-

that it is the other observer’s stick that is shorter, compared to his own.1

1. One can show that lengths perpendicular to the direction of motion are unaff ected.
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Hawking’s Theorem

In this appendix, we will discuss a famous theorem by Stephen Hawking re-

garding time travel. The theorem appeared in his chronology protection con-

jecture paper (1992), but it holds independently of whether chronology protec-

tion is true or not. It is reasonable to assume that even an arbitrarily advanced 

civilization will be able to warp spacetime only in a fi nite region, in order to 

build a time machine. Hawking proved that, given certain assumptions, in or-

der to build a time machine in a fi nite region of spacetime, one needs matter 

that violates the null energy condition, that is, negative energy.1

Here, we give a very rough sketch of his proof. Hawking uses the method of 

proof by contradiction. The techniques he applies are known as “global tech-

niques” in relativity. These methods allowed Roger Penrose and Hawking to de-

rive the famous “singularity theorems” in the 1960s and early 1970s. One advan-

tage of using these techniques is that Hawking does not have to assume anything 

specifi c about the exact type of mass/energy used to build the time machine or 

the details of its construction. This makes his result very general and powerful.

Refer to fi gure A6.1 for the following discussion. Consider the spacelike 

surface S, which you can think of as a “snapshot” of space at one instant of 

time. (We assume S to be infi nite in extent, so we can only show a fi nite por-

tion of it). If we examine the point p, which lies to the future of S, we see that 

every past-directed timelike or lightlike curve from p (such as the dotted curve 

shown) intersects, or “registers” on, S. Therefore, what is going to happen at p 

can be predicted from information given on S (recall our light cone discussion 

from chapter 4), that is, from the shaded region of S where the past light cone 

of p intersects S. All such points p that have this property lie in what is called 

the (future) “domain of dependence of S,” the region in the diagram called 

D+(S).2 This is the region of spacetime (to the future of the surface S) that is 

1. Hawking’s analysis generalizes earlier work done by Frank Tipler in the 1970s.

2. To see this, pick any point in the region of the diagram, D+(S). Call it r. Draw the past light 

cone of r until the cone eventually intersects S, keeping in mind that S extends infi nitely far. All past-
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 predictable from information given on S. If we examine the point q, we see that 

it does not have this property, since there is a closed timelike curve through q. 

The past-directed part of this curve does not intersect S, and so does not “reg-

ister” on S. Therefore, the point q does not lie in the domain of dependence, 

D+(S), of S. In other words, what is going to happen at q cannot be predicted by 

information given on S, since there is at least one curve (with a past-directed 

part) through q that does not “register” on S. The boundary of the region be-

directed timelike or lightlike curves from the point r must lie inside or on its past light cone, so if 

its past light cone intersects S, all the past-directed timelike or lightlike curves from r must also 

intersect S. Therefore, what is going to happen at r can be predicted from information on S.)

C

time travel region

closed timelike curve
q

D+(S)

compact region 

of spacetime

lightlike “generators” lig
htli

ke “g
enera

to
rs

”
tim

e travel horizon
tim

e tr
avel h

oriz
on

time travel horizon

S

p

past light cone

of p

fig. a6.1. A compactly generated time travel horizon. The lightlike generators of the hori-

zon have no endpoints, but wind around and around in the compact region C. 
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tween all points like q and points like p is what we have called the “time travel 

horizon” in fi gure A6.1. This boundary separates the region of spacetime con-

taining closed timelike curves from the region that does not.

In his proof, Hawking fi rst shows that the time travel horizon is made up of 

pieces of lightlike geodesics, called “generators.” The generators are defi ned 

in such a way that there is only one generator passing through each point of 

the time travel horizon. As an analogy, think of the surface of a cylinder. Draw 

a series of lines on the cylinder that are parallel to the cylinder axis. We can 

think of these lines as “generators” of the cylinder in that, as we follow them 

along, they “trace out” the cylinder, and there is only one generator passing 

through each point.

In the case of the time travel horizon, it can be shown that no two points 

of the horizon can be connected by a timelike curve. Related to this is another 

important—and nonobvious—feature of the generators of the time travel hori-

zon: they can have no past endpoints.3 Endpoints are where generators enter 

or leave the horizon.

As an analogy, consider two light rays in a light cone in fl at spacetime, 

which cross at the origin O. This is shown in the diagram on the left in fi gure 

A6.2. As a result of their crossing, the two points on the upper and lower parts 

of the light cone, labeled a and b, respectively, can be connected by a timelike 

curve (the dotted line). Similarly, if two nearby generators in the time travel 

horizon could cross one other at a point e, as shown, for example, on the right 

in fi gure A6.2, then the points labeled c and d could also be connected by a 

timelike curve. But then the two generators could not remain in the horizon, 

because no two points of the horizon can be connected by a timelike curve.

Since the generators of the time travel horizon have no past endpoints, what 

can they do? Well, why can’t they just “stop”? In spacetime when a timelike or 

lightlike curve “just stops,” that means it is simply not possible to extend it any 

farther. Such a curve indicates the presence of a spacetime singularity where 

space and time come to an end. For example, in the case of an observer follow-

ing a timelike curve, this would mean that at some fi nite value of his wristwatch 

time, his existence suddenly comes to an end. He’s “run out” of spacetime, as 

3. Technical note: More precisely, the generators of the time travel horizon either have no past 

endpoints or past endpoints on the edge of  S. But we have assumed in our argument that S is infi -

nite in extent. Therefore, in our case, S has no edge. Also, although the generators can have no past 

endpoints, they can have future endpoints. But that does not aff ect our discussion.
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it were. Since we can’t know or control what comes out of a singularity, we 

want to exclude that possibility from our time machine construction.

If the generators of the time travel horizon don’t run into a singularity, they 

could go off  to infi nity. That is, as we follow them backward into the past, they 

could get farther and farther away from the region of spacetime where we are 

building our time machine. But then information coming from extremely far 

away could aff ect the construction of our machine. Even the most advanced 

civilization can only manipulate spacetime in a fi nite region.

Therefore, in his proof, Hawking needs to precisely capture the notion of 

what it means to “build a time machine in a fi nite region of spacetime.” To this 

end, he wants to, quite reasonably, exclude information coming in from a sin-

gularity or from infi nity. OK, so if the generators don’t run into a singularity or 

go off  to infi nity, what’s left for them to do? Hawking takes as his defi nition of 

“building in a fi nite region” that the time travel horizon is “compactly gener-

ated.” This means that if we follow the generators of the time travel horizon 

toward the past direction, they enter and remain within some bounded (more 

two points on opposite sides of 

two nearby generators 

in the time travel horizon with

a crossing point

c

d

e

a

b

O

fig. a6.2. Crossing points of generators in spacetime.
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precisely, “compact”) region of spacetime C, spiraling around and around, and 

never leave the time travel horizon (this is illustrated in fi gure A6.1).

Now consider two such generators that lie very close to each other in the 

time travel horizon. Follow these generators backward, in the past direction. 

Since they are entering a bounded region of spacetime, instead of, say, going off  

to infi nity, they must start to converge. (As we follow the generators past-ward, 

the region of spacetime they border gets smaller, so they must converge toward 

the past.) Hawking also initially assumes that the null energy condition holds. 

(Actually, the weaker, averaged null energy condition is suffi  cient.) Recall that 

this is similar to the weak energy condition, but along light rays. This condi-

tion guarantees that light rays are always focused—never defocused—by gravity. 

If the generators in the time travel horizon start to converge, and if the null 

energy condition holds, one can show that the light rays must cross eventually 

each other, as depicted on the right in fi gure A6.2. (It can be shown that this 

will occur within a fi nite distance along the rays.)

But once the light rays cross, they leave the time travel horizon at the point 

where they cross. This means that the crossing point is a past endpoint, which 

lies on the time travel horizon. But this is a contradiction, because, as Hawk-

ing showed earlier, the generators of the time travel horizon have no past end-

points. The only way these generators can start to converge but never cross, 

and thus not have past endpoints, is if the null energy condition is violated. 

Thus, in order to build a time machine in a fi nite region of spacetime, given 

Hawking’s assumptions, one requires negative energy. In closing, we again 

emphasize that this conclusion does not depend on the validity of the chronology 

protection conjecture.

Caveats: Some Objections to Hawking’s Arguments

Not everyone agrees with Hawking’s criterion for “building a time machine 

in a fi nite region of spacetime,” that is, his condition that time travel horizons 

should be compactly generated. One person who disagrees is Amos Ori, at 

the Technion in Israel. He feels that Hawking’s condition is too restrictive a 

condition for “buildability.” Ori has published a time machine model that ini-

tially consists of vacuum plus “dust” (i.e., noninteracting particles). Specifi -

cally, there is no negative energy used in his construction. Nevertheless, closed 

timelike curves eventually develop in the model. This is because the time travel 

horizon in Ori’s model is not compactly generated, so it evades Hawking’s 

theorem. However, this implies that Ori’s time machine model will contain 
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either naked singularities (not hidden inside of black holes) or “internal infi ni-

ties,” which we will describe below.

We can divide Ori’s objections into two parts, which we might call the “fi -

niteness” argument and the “causal control” argument. The fi niteness argu-

ment relates to the requirement of building a time machine in a fi nite region. 

Ori argues that we have to be careful about what we mean by “fi nite region.” 

For example, do we mean a fi nite region of three-dimensional space or a fi nite 

region of four-dimensional spacetime? Ori’s criterion is that the time machine 

should be “compactly constructed,” that is, that the time machine originate in 

an initially fi nite region of three-dimensional space. His time machine model 

does have this property. Ori argues that if this region of space is initially fi -

nite, one has control over it at the time when the time machine is turned on. 

However, if the time travel horizon is not compactly generated, in the sense 

of Hawking, it is possible that as a result of forming the time machine, naked 

singularities may develop, or that this region might be “blown up” (enlarged) 

by the subsequent evolution of the spacetime, to form what is called an “inter-

nal infi nity.”

One way of thinking about the latter is to take a point from spacetime, and 

imagine “moving” that point until it is “infi nitely far away” (in some techni-

cally appropriate sense). If the worldline of an observer approaches this point, 

it will take the observer an infi nite proper time to reach it. It’s a little like run-

ning toward a receding goalpost, which always moves away too fast for you to 

ever reach it. So instead of a singularity, we have created a “point at infi nity.” 

Ori remarks that such internal infi nities arise in typical black hole models. 

Therefore, he argues that if such an infi nite region forms from the initially 

fi nite region of three-dimensional space upon construction of our time ma-

chine, this is not necessarily cause for concern. It simply indicates that this just 

happens to be the way the spacetime will evolve according to the laws of gen-

eral relativity. Since we can collapse matter in an initially fi nite region of space 

to form black holes, we shouldn’t worry about internal infi nities forming as a 

result making a time machine. We comment, however, that in the black hole 

cases, the internal infi nities are hidden behind event horizons. In the time ma-

chine models they would not be (or at least not need to be). To us, this seems 

to be a crucial diff erence.

Ori points out that in black hole spacetimes, the black hole, although fi lling 

only a fi nite region of three-dimensional space in the external world (i.e., its ho-

rizon is of fi nite size at any moment of time), has an infi nite four- dimensional 
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interior volume. This is because the horizon exists forever (neglecting the 

Hawking black hole evaporation process).

We point out that the same is true for the future of any bounded region of a 

spacelike surface in fl at spacetime. It’s just that in that case, there is no horizon 

for it to hide behind. For example, in the top diagram in fi gure A6.3, take S to 

be a spacelike surface in fl at spacetime (with no time machines, black holes, 

etc.). The circular region labeled B (which would be a sphere in real three-

 dimensional space, which S is supposed to represent), is a bounded region of 

the spacelike surface S. Draw the future light cone of that region. It will con-

tain an infi nite volume of spacetime because the cone expands forever, getting 

larger as time goes on.

Now let us examine a possible problem with internal infi nities. Suppose 

that such an infi nite region arises “smack in the middle of the spacetime,” as it 
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fig. a6.3. A spacetime with a (past) “internal infi nity.”
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were, where you are building your time machine. Ken Olum points out that if 

Ori’s construction leads to the development of past “internal infi nities,” there 

are likely to be problems. In this case, by past internal infi nities we mean: not 

hidden behind event horizons, arising in the region where we are trying to 

construct our time machine, and whose past light cone opens out to infi nity. 

We would be creating a place that has an infi nite spacetime volume within its 

past light cone that does not intersect the initial spacelike surface S, so that 

the past internal infi nity does not lie within the domain of dependence of S. 

The initial conditions within this past light cone can aff ect the formation of 

the time machine, but they are not determined by the initial conditions on the 

surface S, over which we have control, which seems very odd. This is illustrated 

in the bottom diagram in fi gure A6.3.

A second, more fundamental issue that Ori raises is the “causal control” ar-

gument, that is, Hawking’s use of compactly generated time travel horizons as 

an argument for causal control of the region of spacetime exterior to the region 

of closed timelike curves. The attempt to control a region in which closed time-

like curves develop can be diffi  cult, even in principle. If we go back to our dia-

gram in fi gure A6.1, we see that the region of spacetime that contains closed 

timelike curves is not in the domain of dependence of the surface S, that is, it 

lies outside the region marked D+(S), by defi nition. The domain of dependence 

is defi ned to be the region of spacetime that can be predicted by information 

given on S. The boundary of this region is the time travel horizon. Therefore 

the region of closed timelike curves, which lies inside the time travel horizon, 

lies outside of D+(S). This means that whatever happens in that region cannot be 

predicted or controlled from the initial information given on S. So, Ori argues, 

we don’t know for sure whether closed timelike curves will appear there or not, 

or whether, if they do, they will form in just the ways we expect (e.g., with no 

singularities or no internal infi nities). Put the other way, a compactly generated 

time travel horizon does not guarantee that you will get closed timelike curves, 

that is, a time machine. So even the defi nition of what it means to “build” a 

time machine is a bit of a tricky business.4

Ori mentions that the above discussion implies that causality arguments 

alone cannot determine whether closed timelike curves will form. However, he 

also points out that if one assumes, in addition, that the spacetime is “smooth,” 

4. Some of these concerns have also been raised by the philosophers of science: John Ear-

man, Christopher Smeenk, and Christian Wüthrich (see http://philsci-archive.pitt.edu/

archive/00004240/01/TimeMachPhilSciArchive.pdf ).
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that is, has no abrupt jumps in spacetime structure across the time travel hori-

zon, then one can use causality plus smoothness to conclude that closed time-

like curves must occur in his model and in a number of others. So Ori views 

causality plus smoothness as providing a kind of “limited causal control” over 

whether closed timelike curves will develop as a result of one’s manipulations. 

He emphasizes that this property of limited causal control is the best that one 

can hope to achieve in any time machine model, independently of whether the 

time travel horizon is compactly generated or not. Therefore, Ori feels that 

Hawking’s use of compactly generated time travel horizons as an argument 

for insuring causal control over the region up to and including the time travel 

horizon is not conclusive.

Ori is only mildly concerned if time machine construction involves naked 

singularities or internal infi nities that we cannot control. For example, he 

points out that we are living comfortably with a naked singularity in our past, 

namely, the big bang in which our universe began. It does not seem to have af-

fected our ability to predict the outcomes of experiments in our laboratories.

Since the time travel horizon in Ori’s model is not compactly generated, 

this means that either naked singularities or internal infi nities (or both) must 

be present in his model. If the generators of the time travel horizon, when 

traced back into the past, do not spiral around in a compact region, they must 

either end in a singularity or at a point at infi nity. Our point of view, in con-

trast to Ori’s, is in agreement with that of Hawking, namely, that one should 

avoid naked singularities and internal infi nities in scenarios designed to pro-

duce time machines. We would say that it’s bad enough if you may not be able 

to uniquely predict what happens beyond a time travel horizon. We feel that 

things are made worse by naked singularities or regions at infi nity that you 

also cannot control. Also, the occurrence of one naked singularity at the be-

ginning of time (i.e., the big bang) worries us less than what happens to our 

powers of  predictability if we manufacture naked singularities every time we 

manipulate matter in a some appropriate way. The possibility of naked singu-

larities (or internal infi nities) popping up all over the place, as it were, is a lot 

more troubling to us.

Whether one likes or dislikes naked singularities and internal infi nities de-

pends to some extent on personal taste, and on what one is willing to accept. 

The consensus of the relativity community, we think, favors Hawking’s view, as 

do we. However, we should remind the reader (and ourselves!) that in science 

the majority view is not always necessarily the correct one. Ultimately what 

counts are nature’s preferences, and she has not yet shown us her cards.
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Appendix 7

Light Pipe in the Mallett Time Machine

Consider a section of the helical light pipe, with length l, which is short enough 

to be considered straight. Let the laser power, the energy per second, fl owing 

perpendicularly through the circular left face of the pipe be denoted as

P = E

t
,

where E is the energy and t is the time. The radius of the pipe is r, so the cross-

sectional area of the pipe is A = πr2, and the volume of this section of pipe is 

V = πr2l. The energy density, the energy per unit volume, is then

E

V
=

E

πr2l
=

Pt

πr2l

.

Let us choose l to be the distance the light beam travels in a time t = 1sec, so 

that l = ct = c ×1sec. (Don’t worry that this is a very large distance; we could have 

picked any time, since it will cancel out in the next step.) Substituting this into 

the equation above, we get

E

V
=

E

πr2c( sec)
=

P(1sec)

πr2c(11 sec)
=

P

πr2c
.
 

Defi ne the energy per unit length along the pipe, as it winds around the z  axis, 

as ε =
E

l
. Then using the equation just above, we get that

ε =
E

l
=

E

πr2l
πr2( ) =

E

V
πr2( ) =

P

c
.

So we have that the energy per unit length along the pipe is

ε =
P

c
.

Using Einstein’s mass-energy relation, ε = mc2, we can write the mass per unit 

length, m, along the pipe as
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m = P

c3
.

To convert m, the mass per unit length along the laser beam as it winds around 

the z axis, to the total mass per unit length along the z axis in the circulating laser 

beam, let us refer back to fi gure 13.2. Consider a (fi nite) length tightly wound 

helical light pipe, so that each winding sits right on top of the previous wind-

ing with no spacing between them, with length L (along the z axis), and radius 

R0. There is one winding of the light pipe per each 2πR0. If we call the total 

number of windings N, then N = = , where d is the diameter of the light 

pipe and r is its radius. On the other hand, the total length of the light pipe, L1, 

as measured around the z axis is

L
1

= N × 2πR
0

=
πR

0
L

r
.

The mass per unit length as measured around the z axis is

m = M

L
1

,

where M is the total mass equivalent of the laser energy in the entire light 

pipe.

To convert this to mass per unit length as measured along the z axis, m', we 

have

m' = M

L
= M

L
1

⎛

⎝⎜
⎞
⎠⎟

L
1

L

⎛
⎝⎜

⎞
⎠⎟

= m
L

1

L

⎛
⎝⎜

⎞
⎠⎟ .

Now, using our expression for L1 above and our result that m = P

c3
, we get

m' = m
L

1

L

⎛
⎝⎜

⎞
⎠⎟

=
P

c3

πR
0
L

rL

⎛
⎝⎜

⎞
⎠⎟

or

m' = m
πR

0

r

⎛
⎝⎜

⎞
⎠⎟

=
P

c3

πR
0

r

⎛
⎝⎜

⎞
⎠⎟

.

With our chosen values of r = 1 millimeter = 10–3 m, and R0 = 0.5m, with π ≈ 

3.14, this gives 
πR

0

r
≈ 103, as stated in the text.

L L
d 2r





< 253 >

Bibliography

Alcubierre, M. “The Warp Drive: Hyper-Fast Travel within General Relativity.” Classical 

and. Quantum Gravity 11 (1948): L73–L77.

Antippa, A., and A. Everett. “Tachyons, Causality and Rotational Invariance.” Physical 

Review D 8 (1973): 2352–60.

Barcelo, C., and M. Visser. “Scalar Fields, Energy Conditions, and Traversable Worm-

holes.” Classical and Quantum Gravity 17 (2000): 3843.

———. “Traversable Wormholes from Massless Conformally Coupled Scalar Fields.” 

Physics Letters B 466 (1999): 127–34.

Baxter, S. The Time Ships. New York: HarperCollins Publishers, 1995.

Benford, G. Timescape. New York: Pocket Books, 1981.

Benford, G., D. Book, and W. Newcomb. “The Tachyonic Antitelephone.” Physical 

Review D 2 (1970): 263.

Bilaniuk, O., N. Deshpande, and E. Sudarshan. “Meta Relativity.” American Journal of 

Physics 30 (1962): 718.

Borde, A. “Geodesic Focusing, Energy Conditions and Singularities.” Classical and 

Quantum Gravity 4 (1987): 343–56.

Brown, L., and G. Maclay. “Vacuum Stress between Conducting Plates: An Image 

Solution.” Physical Review 184 (1969): 1272.

Casimir, H. “On the Attraction between Two Perfectly Conducting Plates.” Proceedings 

of the Koninklijke Nederlandse Akademie Van Wetenschappen B 51 (1948): 793–95.

Clark, C., B. Hiscock, and S. Larson. “Null Geodesics in the Alcubierre Warp Drive 

Spacetime: The View from the Bridge.” Classical and Quantum Gravity 16 (1999): 

3965.

Clee, M. Branch Point. New York: Ace Books, 1996.

Davies, P. About Time: Einstein’s Unfi nished Revolution. New York: Simon and Schuster, 

1995. See esp. chap. 10, “Backwards in Time,” 219–32, and chap. 11, “Time 

Travel: Fact or Fantasy?” 233–51.

Davies, P., and S. Fulling. “Radiation from Moving Mirrors and from Black Holes.” 

Proceedings of the Royal Society of London Series A 356 (1977): 237–57.

Deutsch, D. “Quantum Mechanics Near Closed Timelike Lines.” Physical Review D 44 

(1991): 3197–217.



254 < Bibliography

Deutsch, D., and M. Lockwood. “The Quantum Physics of Time Travel.” Scientifi c 

American, March 1994, 68–74.

Dummett, M. “Causal Loops.” In The Nature of Time, edited by R. Flood and M. Lock-

wood, 135–69 Oxford: Basil Blackwell Ltd., 1986.

Einstein, A. Appendix I, in Relativity: The Special and the General Theory. New York: 

Crown Publishers 1962, 115–20.

Einstein, A., and N. Rosen. “The Particle Problem in the General Theory of Relativity.” 

Physical Review 48 (1935): 73–77.

Everett, A. “Warp Drive and Causality.” Physical Review D 53 (1996): 7365.

———. “Time Travel Paradoxes, Path Integrals, and the Many Worlds Interpretation 

of Quantum Mechanics.” Physical Review D 69 (2004): 124023.

Everett, A., and T. Roman. “A Superluminal Subway: The Krasnikov Tube.” Physical 

Review D 56 (1997): 2100.

Everett, H. “Relative State Formulation of Quantum Mechanics.” Reviews of Modern 

Physics 29 (1957): 454–62.

Feinberg, G. “Particles that Go Faster than Light.” Scientifi c American, February 1970, 

69–77.

———. “Possibility of Faster-Than-Light Particles.” Physical Review 159 (1967): 1089.

Fewster, C. “A General Worldline Quantum Inequality.” Classical and Quantum Gravity 

17 (2000): 1897–911.

Fewster, C., and S. Eveson. “Bounds on Negative Energy Densities in Flat Space-

Time.” Physical Review D 58 (1998): 104016.

Fewster, C., K. Olum, and M. Pfenning. “Averaged Null Energy Condition in Space-

times with Boundaries.” Physical Review D 75 (2007): 025007.

Fewster, C., and L. Osterbrink. “Averaged Energy Inequalities for the Non-Minimally 

Coupled Classical Scalar Field.” Physical Review D 74 (2006): 044021.

———. “Quantum Energy Inequalities for the Non-Minimally Coupled Scalar Field.” 

Journal of Physics A 41 (2008): 025402.

Fewster, C., and T. Roman. “On Wormholes with Arbitrarily Small Quantities of 

Exotic Matter.” Physical Review D 72 (2005): 044023.

Finazzi, S., S. Liberati, and C. Barcelo. “On the Impossibility of Superluminal Travel: 

The Warp Drive Lesson.” Second prize of the 2009 FQXi essay contest “What is 

Ultimately Possible in Physics?” http://xxx.lanl.gov/abs/1001.4960.

———. “Semiclassical Instability of Dynamical Warp Drives.” Physical Review D 79 

(2009): 124017.

Ford, L. “Constraints on Negative Energy Fluxes.” Physical Review D 43 (1991): 3972.

——— “Quantum Coherence Eff ects and the Second Law of Thermodynamics.” 

Proceedings of the Royal Society of London A 364 (1978): 227–36.

Ford, L., and T. Roman. “Averaged Energy Conditions and Quantum Inequalities.” 

Physical Review D 51 (1995): 4277.



Bibliography > 255

———. “Negative Energy, Wormholes, and Warp Drive.” Scientifi c American, January 

2000, 46–53.

———. “Quantum Field Theory Constrains Traversable Wormhole Geometries.” 

Physical Review D 53 (1996): 5496–507.

Friedman, J., and A. Higuchi. “Topological Censorship and Chronology Protection.” 

Annalen Der Physik 15 (2006): 109–28.

Friedman, J., K. Schleich, and D. Witt. “Topological Censorship.” Physical Review Let-

ters 71 (1993): 1486–489; erratum, Physical Review Letters 75 (1995): 1872.

Frolov, V., and I. Novikov. “Physical Eff ects in Wormholes and Time Machines.” Physi-

cal Review D 48 (1993): 1057–65.

Fuller, R., and J. Wheeler. “Causality and Multiply Connected Space-Time.” Physical 

Review 128 (1962): 919.

Galloway, G. “Some Results on the Occurrence of Compact Minimal Submanifolds.” 

Manuscripta Mathematica 35 (1981): 209–19.

Gao, S., and R. Wald. “Theorems on Gravitational Time Delay and Related Issues.” 

Classical and Quantum Gravity 17 (2000): 4999–5008.

Gödel, K. “An Example of a New Type of Cosmological Solution of Einstein’s Field 

Equations of Gravitation.” Reviews of Modern Physics 21 (1949): 447–50.

Gott, J. “Closed Timelike Curves Produced by Pairs of Moving Cosmic Strings: Exact 

Solutions.” Physical Review Letters 66 (1991): 1126–29.

Hartle, J. Gravity: An Introduction to Einstein’s General Relativity. San Francisco: Addison 

Wesley, 2003.

Hawking, S. “Chronology Protection Conjecture.” Physical Review D 46 (1992): 

603–11.

———. “Particle Creation by Black Holes.” Communications in Mathematical Physics 43 

(1975): 199–220; erratum, Communications in Mathematical Physics 46 (1976): 206.

———. “The Quantum Mechanics of Black Holes.” Scientifi c American, January 1977, 

34–40.

Heinlein, R. “By His Bootstraps.” In The Menace from Earth. Riverdale, NY: Baen Pub-

lishing Enterprises, 1987.

———. The Door into Summer. New York: The New American Library, 1957.

Hiscock, B. “Quantum Eff ects in the Alcubierre Warp Drive Spacetime.” Classical and 

Quantum Gravity14 (1997): L183–88.

Kay, B., M. Radzikowski, and R. Wald. “Quantum Field Theory on Spacetimes with a 

Compactly Generated Cauchy Horizon.” Communications in Mathematical Physics 183 

(1997): 533–56.

Kim, S., and K. Thorne. “Do Vacuum Fluctuations Prevent the Creation of Closed 

Timelike Curves?” Physical Review D 43 (1991): 3929–47.

Krasnikov, S. “Hyperfast Interstellar Travel in General Relativity.” Physical Review D 57 

(1998): 4760.



256 < Bibliography

Kruskal, M. “Maximal Extension of Schwarzschild Metric.” Physical Review 119 (1960): 

1743.

Lobo, F. “Exotic Solutions in General Relativity: Traversable Wormholes and ‘Warp 

Drive’ Spacetimes.” Classical and Quantum Gravity Research 1–78 (2008).

Lobo, F., and M. Visser. “Fundamental Limitations on ‘Warp Drive’ Spacetimes.” Clas-

sical and Quantum Gravity 21 (2004): 5871.

Lossev, A., and I. Novikov. “The Jinn of the Time Machine: Nontrivial Selfconsistent 

Solutions.” Classical and Quantum Gravity 9 (1992): 2309–21.

Mallett, R. “The Gravitational Field of a Circulating Light Beam.” Foundations of Physics 

33 (2003): 1307–14.

Mallett, R., and B. Henderson. Time Traveler: A Scientist’s Personal Mission to Make Time 

Travel a Reality. New York: Basic Books, 2006.

Morris, M., and K. Thorne. “Wormholes in Spacetime and Their Use for Interstellar 

Travel: A Tool for Teaching General Relativity.” American Journal of Physics 56 (1988): 

395–412.

Morris, M., K. Thorne, and U. Yurtsever. “Wormholes, Time Machines, and the Weak 

Energy Condition.” Physical Review Letters 61 (1988): 1146–49.

Natário, J. “Warp Drive with Zero Expansion.” Classical and Quantum Gravity 19 (2002): 

1157–66.

Novikov, I. The River of Time. Cambridge: Cambridge University Press, 1998.

Olum, K. “Geodesics in the Static Mallett Spacetime.” Physical Review D 81 (2010): 

127501.

———. “Superluminal Travel Requires Negative Energies.” Physical Review Letters 81 

(1998): 3567.

Olum, K., and A. Everett. “Can a Circulating Light Beam Produce a Time Machine?” 

Foundations of Physics Letters 18 (2005): 379–85.

Olum, K., and N. Graham. “Static Negative Energies Near a Domain Wall.” Physics 

Letters B 554 (2003): 175–79.

Ori, A. “Formation of Closed Timelike Curves in a Composite Vacuum/Dust 

 Asymptotically-Flat Spacetime.” Physical Review D 76 (2007): 044002.

Parker, L. “Faster-Than-Light Intertial Frames and Tachyons.” Physical Review 188 

(1969): 2287.

Pfenning, M., and L. Ford. “The Unphysical Nature of ‘Warp Drive.’” Classical and 

Quantum Gravity 14 (1997): 1743.

Rolnick, W. “Implications of Causality for Faster-Than-Light Matter.” Physical Review 

183 (1969): 1105.

Roman, T. “On the ‘Averaged Weak Energy Condition’ and Penrose’s Singularity Theo-

rem.” Physical Review D 37 (1988): 546–48.

———. “Quantum Stress-Energy Tensors and the Weak Energy Condition.” Physical 

Review D 33 (1986): 3526–33.

Sagan, C. Contact. New York: Simon and Schuster 1985.



Bibliography > 257

Slusher, R., L. Hollberg, B. Yurke, J. Mertz, and J. Valley. “Observation of Squeezed 

States Generated by Four-Wave Mixing in an Optical Cavity.” Physical Review Letters 

55 (1985): 2409.

Taylor, B., B. Hiscock, and P. Anderson. “Stress-Energy of a Quantized Scalar Field in 

Static Wormhole Spacetimes.” Physical Review D 55 (1997): 6116.

Taylor, E., and J. Wheeler. Spacetime Physics: Introduction to Special Relativity. 2nd ed. New 

York: W. H. Freeman and Company, 1992.

Tipler, F. “Energy Conditions and Spacetime Singularities.” Physical Review D 17 

(1978): 2521–28.

———. “Rotating Cylinders and the Possibility of Global Causality Violation.” Physi-

cal Review D 9 (1974): 2203–6.

———. “Singularities and Causality Violation.” Annals of Physics 108 (1977): 1–36.

Thorne, K. Black Holes and Time Warps: Einstein’s Outrageous Legacy. New York: W. W. 

Norton, 1994.

Toomey, D. The New Time Travelers. New York: W. W. Norton, 2007.

Urban, D., and K. Olum. “Averaged Null Energy Condition Violation in a Conformally 

Flat Spacetime.” Physical Review D 81 (2010): 024039.

———. “Spacetime Averaged Null Energy Condition.” Physical Review D 81 (2010): 

024039.

Van Den Broeck, C. “A ‘Warp Drive’ with More Reasonable Total Energy Require-

ments.” Classical and Quantum Gravity 16 (1999): 3973.

van Stockum, W. “Gravitational Field of a Distribution of Particles Rotating about an 

Axis of Symmetry.” Proceedings of the Royal Society of. Edinburgh 57 (1937): 135–54.

Vilenkin, A. “Gravitational Field of Vacuum Domain Walls and Strings.” Physical 

Review D 23 (1981): 852.

Visser, M. Lorentzian Wormholes: From Einstein to Hawking. Woodbury, NY: American 

Institute of Physics Press, 1995.

———. “The Quantum Physics of Chronology Protection.” Contribution to The Future 

of Theoretical Physics and Cosmology, a conference in honor of Professor Stephen 

Hawking on the occasion of his 60th birthday, edited by G. Gibbons, E. Shellard, 

and S. Rankin, 161–73. Cambridge: Cambridge University Press, 2003.

———. “The Reliability Horizon for Semi-Classical Quantum Gravity: Metric Fluctua-

tions Are Often More Important than Back-Reaction.” Physics Letters B 415 (1997): 

8–14.

———. “Traversable Wormholes: Some Simple Examples.” Physical Review D 39 

(1989): 3182–84.

———. “Traversable Wormholes: The Roman Ring.” Physical Review D 55 (1997): 

5212.

Visser, M., S. Kar, and N. Dadhich. “Traversable Wormholes with Arbitrarily Small 

Energy Condition Violations.” Physical Review Letters 90 (2003): 201102.

Wells, H. G. The Time Machine. New York: Tor Books, 1992.





< 259 >

Index

Aeschylus, 136

aether, 25–30

air table, 18

Alcubierre, Miguel, 6–7, 117–21

Alcubierre warp drive spacetime, 6–7, 

117–21, 118, 159, 185–86, 187

Al-Khalili, Jim, Black Holes, Wormholes, and 

Time Machines, 184n2

Ampère, André-Marie, 24

Anderson, Paul, 184

Anderson, Poul, Tau Zero, 57n2

Andromeda galaxy, distance to, 1

angular momentum, conservation of, 70

antimatter, 159

antiparticle, 41, 159

Antippa, Adel, 68–69, 70

“arrow of time” concept, 76–88; ad-

ditional arrows, 87n7; causal arrow, 

84–87; cosmological arrow, 87–88; 

thermodynamic arrow, 81–84

atomic clocks, 12, 17, 36, 59, 99, 104

Augustine, Saint, 10

averaged energy conditions, 167–69. See 

also specifi c types

averaged null energy condition, 168–69, 

177–78, 179–80, 245

averaged weak energy condition, 168, 169, 

172, 175, 176, 179–80

“back-reaction” eff ect, 121, 191, 192–93

“banana peel mechanism” idea, 7–8, 

144–45, 154, 157, 220

Barcelo, Carlos, 121, 179, 185

baryon number, conservation of, 71–72

Baxter, Stephen, The Time Ships, 145

Benford, Gregory, 67; Timescape, 67n1

Berra, Yogi, 22, 49

Bilaniuk, O., 64, 66

black holes: evaporation eff ect, 164–65, 

167; event horizon and, 106, 109, 206; 

explanation of, 6, 106; forward time 

travel and, 6; internal infi nities and, 

246–249; singularities inside of, 159; 

time dilation eff ect near, 106–11; as 

time machines, 109–11; wormholes 

similar to, 114

Book, D. L., 67

bootstrap paradoxes. See information 

paradoxes

Borde, Arvind, 168

Bose-Einstein condensates, 221

Carroll, Lewis, 218

Casimir, Hendrik, 164

Casimir eff ect, 164, 167, 169, 172, 

175–78, 180, 182–83, 220

Cauchy horizon, 128

causal loops: closed, 130, 134; inconsistent, 

4, 131–32, 142–43; self-consistent, 141

causality, principle of, 84–87, 130–32, 

248–49

cause-and-eff ect: coincidence and, 84–85; 

light cone and, 42, 46, 47–48, 84–87; 

time travel and, 6, 248–49

Page numbers in italics refer to fi gures.



260 < Index

CERN. See European Organization for 

Nuclear Research (CERN)

Chaplin, Charlie, 105

charge-to-mass ratios, 90–91

Chew, Geoff rey, 63

chronology horizon, 128, 190

chronology protection conjecture, 8, 144, 

189–95, 198, 199, 222, 241, 245

Clark, Chad, 121

Clee, Mona, Branch Point, 145

clever spacecraft scenario, 137–40

clocks: atomic, 12, 17, 36, 59, 99, 104; 

biological, 60–61; gravity and, 99–101; 

light, 52, 236–40; special relativity and, 

49–52; synchronization and simultane-

ity, 36–39, 49; time measurement by, 5, 

6, 12, 16–17, 32–33, 54–58

closed timelike curves: cylinder time 

machines and, 198–209; cylindrical 

universe and, 196–97; explanation of, 

4; forbidden by chronology protec-

tion conjecture, 194; Gödel’s universe 

and, 198; Gott’s model, 213–14; in 

Hawking’s theorem, 242, 242–43, 245, 

248–49; time travel horizon and, 193; in 

wormhole time machines, 128

Coleridge, Samuel Taylor, 112

Colton, Charles Caleb, 112

consistency paradoxes, 53, 136, 140–44. 

See also grandfather paradox

constant velocity, 17

cosmic strings, 8–9, 184, 209–13, 

216–17

cosmic string time machine, 209, 213–17, 

214, 222–23

cosmological constant, 189

Coulomb, Charles-Augustin de, 24

cryogenic sleep, 60–61

“curved spacetime” idea: general theory 

of relativity and, 89, 101–3, 102, 108; 

gravity as result of, 6; local fl atness of, 

181–83, 219–20

cylindrical universe, 196–97; properties of, 

197; topology of, 196–97

Dahich, Naresh, 185

dark energy, 189, 220

Davies, Paul, How to Build a Time Machine, 

173–74

Davis, E. W., 223n2

decoherence phenomenon, 152–53, 155

density matrices, 149n6

Deshpande, N., 64, 66

designer spacetimes, 115

Deutsch, David, 8, 149, 151–57

Dickens, Charles, 49

Dirac fi eld, 173, 180

directions in space, laws of physics and, 

69–71, 76–77

directions in time, laws of physics and, 

77, 84

distances in space, 1, 219, 221

domain walls, 212

Dummett, Michael, 15

dust, 198n1

Dylan, Bob, 42, 158

Earman, John, 248n4

Eddington, Arthur Stanley, 76, 105

Einstein, Albert: derivation of Lorentz 

transformations, 227, 231; energy-

mass relation equation, 7, 13, 31, 

40–41, 95, 209; fi eld equations, 102–3, 

114–17, 200–1, 218; general theory of 

relativity, 4, 6, 59, 85, 89–111, 158–59; 

special theory of relativity, 2, 5–6, 

30–31, 39–41, 42, 59; statement about 

general theory of relativity, 115–16; 

thought experiments, 92–95; wormhole 

idea, 114

electromagnetic fi eld, quantum inequali-

ties in, 170–73, 180

electromagnetic radiation energy, 41

electromagnetism, 24–25, 30: gravity vs., 

89–91; infi nitely long systems studied 

in, 199

electron, behavior of, 146–47, 149–50, 

152

Eliot, T. S., 42



Index > 261

energy, conservation of: Einstein’s equa-

tion and, 31, 39–41; law of, 3, 79, 

134–35, 143–44, 162–63, 194; tachyons 

and, 71–74; Wells’s time machine’s 

violation of, 13–14

energy density in squeezed vacuum state, 

166, 166–67, 172

energy-time uncertainty principle, 86n5, 

163, 169, 172. See also uncertainty 

principle

entanglement phenomenon, 85–86n5

entropy, 79–84, 87–88, 202

equilibrium state, 80, 82

equivalence, principle of: curved spacet-

ime idea and, 219–20; gravity’s eff ect 

on clocks, 99–101; mass and, 91–94, 

93, 94, 95, 105; negative mass and, 160

European Organization for Nuclear Re-

search (CERN), Geneva, 5

event horizon, 106–7, 109, 114, 116, 206, 

246, 248

Everett, Allen, 9, 62–63, 70–71, 75, 201–2; 

“Time Travel Paradoxes, Path Integrals, 

and the Many Worlds Interpretation of 

Quantum Mechanics,” 141–43, 155

Everett, Hugh, 8, 146, 147, 150–53

Eveson, Simon, 173

exotic matter (negative energy), 158–80; 

antimatter contrasted with, 159; aver-

aged energy conditions and, 167–69; 

Casimir eff ect, 164, 167, 169, 172, 

175–78, 180, 182–83; classical fi elds 

and, 178–80; dark energy as, 220; 

Hawking’s theorem, 7, 181, 198–202, 

205, 208, 217, 241–59; Krasnikov 

tube’s use of, 122–24, 186; negative 

energy as, 158–67; negative mass 

contrasted with, 159–63, 188; physical 

restrictions on, 7; quantum inequalities 

and, 169–73, 180; quantum interest 

and, 175–78, 179; quantum mechanics 

laws regarding, 163–67; warp bubbles’ 

use of, 119, 186; wormholes’ use of, 

116–17, 183–85, 222–23

Faraday, Michael, 24, 89–90

Farscape, 6

Feinberg, Gerald, 63, 64

Fermi National Laboratory, 5

Fewster, Chris, 169n2, 173, 177, 178, 

179–80, 188

Feynman, Richard, 223

Finazzi, Stefano, 121

fi rst law of thermodynamics. See energy, 

conservation of

Ford, Larry, 7, 75, 148, 169–73, 183, 

185–86

Foster, Jodie, 114

Foundations of Physics Letters, 201

frame of reference, 17–18. See also inertial 

frame of reference; noninertial frame of 

reference

Friedman, John, 168–69

Frolov, Valery, 129

Fuller, Robert, 114

Fulling, Stephen, 173–74

Galilean transformations, 19–22, 26–33; 

velocity transformations derivation, 

225–26

Galilei, Galileo, 19, 92

Galloway, Greg, 168

Gao, Sijie, 124

Geller, Uri, 223n2

general theory of relativity, 89–111; bend-

ing of light by the sun test, 104–5; black 

holes and, 106–11; “classical” tests of, 

103–11; “curved spacetime” idea in, 89, 

101–3, 180, 181–83; discovery of, 4; 

Einstein’s views on, 115–16; explana-

tion of, 101–3; gravitational redshift 

test, 103–4; gravity and light, 94–95; 

precession of the perihelion test, 103; 

principle of equivalence, 91–94, 105, 

219–20; space-time structure in, 6; tidal 

forces, 95–99; time dilation eff ect and, 

59, 236–40

geodesics, 101–2, 111, 178, 207–8, 243

Geroch, Bob, 190



262 < Index

Gilbert, W. S., 136

Gilliam, Terry, 144

global inertial frame of reference, 98–99

Gödel, Kurt, 198, 201

Gold, Thomas, 76

Gott, Richard, 209, 213–17

Graham, Noah, 176–77, 180, 183, 

188–89

grandfather paradox, 4, 7; billiard ball 

version, 129–35, 131, 145, 151–52; as 

consistency paradox, 53, 136; many 

worlds interpretation solution, 149, 

150–51; self-consistent solution to, 

132–34, 133, 141–44

granularity of space, 184–85

Gravel, Pierre, 187

gravitational mass, 91–92, 160

gravitational redshift, 103–4, 106

gravity: of black holes, 106–11; earth’s 

gravitational fi eld, 100; Einstein’s 

theory of, 4, 6; electromagnetism vs., 

89–91; light and, 94–95; Newton’s law 

of, 89, 90–92, 97–98, 160–61; principle 

of equivalence, 92–94, 105; theory of 

semiclassical, 190–91, 192; tidal fl ex-

ing, 95–99; time and, 99–101; used for 

time dilation, 129

ground state of energy, 180

Guth, Alan, The Infl ationary Universe, 211

half-life, 59–60, 71, 77n1

Hawking radiation, 164–65

Hawking, Stephen: chronology protec-

tion conjecture, 8, 144, 191–95, 198, 

199, 222, 241, 245; evaporation eff ect 

predicted by, 164–65; exotic matter 

theorem, 7, 181, 198–202, 205, 208, 

217, 241–49; singularity theorems, 159, 

243, 243–44

Heinlein, Robert: By His Bootstraps, 144; 

The Door into Summer, 60–61

Heisenberg, Werner, 163, 169

Hiscock, Bill, 121, 184

Hubble, Edwin, 189

inconsistent causal loops, 4, 131–32, 

142–43

inertial frame of reference: defi nition of, 

18; earth as, 26, 54; explanation of, 

18–21, 20; Galilean transformations, 

19–21; gravity and, 95–99; principle 

of general covariance, 95; principles 

of relativity and, 30–31, 54, 74, 89, 96; 

speed of light and, 30, 33, 64–66; sun’s 

center of, 26; tachyons and, 69

inertial mass, 91, 160

information paradoxes, 136–40, 151–52

initial conditions, 16, 78, 82, 132–33, 134, 

248

interference phenomenon, 23, 27–29, 28

interferometer, 27

internal infi nity, 246–49, 247

invariant interval, 33–36, 44, 46, 54–58; 

derivation, 232–33; lightlike, 45, 48; 

spacelike, 45, 48, 126; timelike, 45, 

48, 54

jinnee balls scenario, 137–40

Kar, Sayan, 185

Kay, Bernard, 191–92

Kibble, Tom, 209, 212

Kim, Sun-Won, 190–91

Krasnikov, Serguei, 7, 119–21, 122

Krasnikov tubes, 7, 122–24, 123, 126, 

186–87, 194

Kruskal, Martin, 114

Lamb, Charles, 22

Lamb, Willis, 164

Lamb shift, 164

Large Hadron Collider (LHC), 5

Larson, Shane, 121

Lawrence Berkeley National Laboratory, 

62, 63

length contraction phenomenon, 239–40

Liberati, Stefano, 121

Light: barrier, 2, 4, 6, 39–40, 44–46, 

64; bending of by sun, 104–5; early 



Index > 263

research on, 22–23; gravity and, 94–95; 

Maxwell’s research on, 24–25; photons, 

40; Young’s research on, 23–24. See also 

speed of light; superluminal travel

light clocks, time dilation via, 52, 236–40, 

237

light cones, 42–48, 47, 109, 110; causal-

ity and, 47–48, 84–87, 247–49; curved 

space times represented by, 108–10; 

Krasnikov tube and, 122–24, 123; 

Lorentz transformations and, 46–47; 

signifi cance of, 44; special relativity 

and, 42; time travel horizon, 127–29, 

243–44, 244; warp bubbles and, 

117–18, 121

light pipes in Mallett time machine, 9, 

201–2, 203, 207–9, 250–51

light-year, length of, 1

liquid helium, 60, 221

Lobo, Francisco, 187–88

local inertial frame of reference, 98

Lorentz transformations, 31–41; clock 

synchronization and simultaneity, 

36–39, 49, 51–52, 236, 237–39; clocks 

in, 32–33; derivation, 227–31; equa-

tions, 31–33, 32, 37–38, 39, 65; invar-

iant interval and, 33–36, 215, 232–33; 

inverse equations, 52n1; light barrier 

and, 39–40, 63–64; light cone and, 46–

47; orientation to coordinate axes in x,t 

plane, 35–36, 124, 234–35; reinterpreta-

tion principle and, 66–68, 73; superlu-

minal reference frames and, 68, 70–71

Lossev, A., “The Jinn of the Time 

Machine,” 137–40

macrostate of a system, 80–82, 150

Mallett, Ronald: rotating cylindrical time 

machine model, 8–9, 200–209, 250–51; 

Time Traveler, 9, 200, 207

Mandelstam, Stanley, 63

many worlds interpretation of quantum 

mechanics, 8, 146–54; decoherence 

phenomenon in, 152–53, 155; grand

father paradox and, 150–51; informa-

tion paradox resolutions in, 151–52; 

slicing and dicing problem, 155–57, 

220; time machine and, 148–49

Marchildon, Louis, 70

massless particles, 40–41

mass spectrometer, 90–91

mathematician’s proof paradox, 136–37, 

151

Maxwell, James Clerk, 24–25, 89–91

Maxwell’s equations, 25, 26, 30, 76, 

89–90

Mercer, Johnny, 158

Michelson, Albert, 25–30

Michelson-Morley experiment, 25–30, 28, 

31, 38, 233

microstate of a system, 80–81, 88, 150

Milky Way galaxy, distances across, 1

Miller, P. Schuyler, “As Never Was,” 

141n4

momentum, conservation of, 39–41, 70, 

162, 187–88, 231

Morley, Edward, 25–30

Morris, Mike S., 115–17, 126–34, 178, 

183; “Wormholes, Time Machines, 

and the Weak Energy Condition” (with 

Thorne and Yurtsever), 4, 177

Mossbauer eff ect, 104

motion, fi rst law of, 18

motion, second law of, 160–62

muons, 60

naked singularities, 206–7, 246, 248–49

Natário, José, 117, 121, 187

negative energy. See exotic matter

negative mass, 75, 159–63, 188

neutron stars, 105–6, 107, 129

Newcomb, W. A., 67

Newton, Isaac: law of conservation of 

momentum, 187–88; law of gravitation, 

89, 90–92, 97–98, 160–61, 179; laws of 

motion, 18, 77–79, 134, 160–62; space-

time theories, 42

Newton, Roger B., 86n6



264 < Index

noninertial frame of reference: clocks at 

rest in, 99–101; explanation of, 18; 

principle of general covariance, 95

nonminimally coupled scalar fi eld 

(NMCSF), 178–80, 185, 189

Novikov, Igor, 129, 134, 143; “The Jinn of 

the Time Machine,” 137–40

Olum, Ken, 9, 124, 176–77, 178, 180, 183, 

188–89, 201–2, 206, 207–8, 221, 248

Ori, Amos, 245–49

Osterbrink, Lutz, 179–80, 188

paradoxes: in backward time travel, 4, 7–8, 

15–16, 52–58, 129–35, 136–45; con-

sistency, 53, 136, 140–44; grandfather, 

4, 7, 53, 130–34, 136, 141–44, 149, 

150–51; information, 136–40, 151–52; 

mathematician’s proof, 136–37; twin, 

5, 52–58, 119, 126–29; types of, 136

parallel worlds, 8, 145–57. See also many 

worlds interpretation of quantum 

mechanics

Parker, Leonard, 68

particles, formula for energy of, 40–41

Penrose, Roger, 82n3, 159, 241

perihelion shift, 103

perpetual motion machines, 194

Petty, Tom, 89

Pfenning, Mitch, 177, 178, 185–86

photons, 40, 236–38

Physical Review, 8, 64, 149, 151, 207–8

Physical Review Letters, 4, 216–17

Planck, Max, 163

Planck length, 183, 184, 185–86, 187, 210

Planck’s constant, 163, 169–70

Plante, Jean-Luc, 187

post hoc ergo propter hoc fallacy, 85

Pound, R. V., 104

precession of the perihelion, 103

preferred frame of reference for speed of 

light, 25–30

“proper time,” 52, 54–58, 127–28, 197, 

208, 236, 239, 246

proton decay, 72–74

Proxima Centauri, distance to, 1

Puthoff , H. E., 223n2

Pythagorean theorem, 28, 34, 236–40

quantum gravity, 109, 222

quantum inequalities: constraints of, 

181–83, 201, 218, 219–20, 222–23; 

Davies-Fulling analysis, 173–75; expla-

nation of, 169–73, 180; Fewster-Eveson 

derivation of, 173; in fl at spacetime, 

181–82; physical interpretation of, 170; 

possibilities for circumventing, 188–89; 

quantum interest eff ect, 175–78, 179; 

sampling function of, 182–83; warp 

drives and, 185–86; wormholes and, 

183–85

quantum interest eff ect, 175–78, 179

quantum mechanics: Copenhagen 

interpretation, 147, 148–49; energy-

time uncertainty principle, 86n5, 163, 

169, 172; entanglement phenomenon, 

85–86n5; light’s particle-like proper-

ties discovered through, 24, 40; many 

worlds interpretation, 8, 146–54; nega-

tive energy described by, 163–67; theory 

of, 146–47; time-reversal invariance 

and, 77n1, 134; uncertainty principle, 

86n5, 165–66, 192

quantum physics: black hole evaporation 

eff ect, 164–65; examples of negative 

energy in, 164–67; squeezed states of 

light, 165–66; squeezed vacuum state, 

166–67

quantum stress-energy tensor, 191–92

Radzikowski, Marek, 191–92

Rebka, G. A., 104

redshift, gravitational, 103–4, 106–7

reinterpretation principle, 66–68, 73

reliability horizon, 192, 193, 193

“rest” energy, 40–41, 66, 210

rest frame, 38–39, 65–66, 72–74, 182

Reviews of Modern Physics, 8, 146



Index > 265

Riemann, Bernhard, 181–83

Riemann curvature tensor, 181–83

“ring of wormholes” spacetime, 192–93, 

222

Rolnick, W. B., 67

Roman, Thomas, 7, 75

Rosen, Nathan, 114

rotating cylinder time machines, 8–9, 

198–209

Sagan, Carl, 195, 223; Contact, 114

Schleich, Kristen, 168–69

Schwarzschild, Karl, 103

Schwarzschild radius, 107, 108

Schwarzschild solution, 103, 206

science fi ction: development of, 5–6; 

parallel universe idea in, 145, 146, 151, 

157; reactionless drives in, 187; super-

luminal travel in, 1, 2, 117, 159, 221; 

time travel in, 2–4, 7–8, 11–16, 60–61, 

65, 138, 144; wormholes in, 6–7, 144. 

See also specifi c authors and titles

second law of thermodynamics, 79–84; 

chronology protection and, 194; cos-

mological arrow of time and, 87–88; 

Eddington on, 76; explanation of, 

80–84; self-existing objects and, 138; 

violations of, 16, 82, 167, 169, 179, 

223n2

semiclassical gravity, theory of, 190–91, 

192

Shakespeare, William, 218

Shellard, Paul, 212

singularity: big bang, 82n3; black hole, 

109; naked, 206–9, 246, 249; spacet-

ime, 243–44; theorems, 159, 200n2, 

241

slicing and dicing problem, 155–57, 220

Sliders, 6

Smeenk, Christopher, 248n4

Smith, Calvin, 169n2

solar eclipse, light-bending eff ect during, 

104–5

Somewhere in Time (fi lm), 138

sound barrier, 2

space, measurements of, 16–21

space, perception of, 14–16

space-time structure: “curved spacetime” 

idea, 89, 101–3, 102, 112–14, 117–18, 

180, 181–83, 219–20; designer space-

times, 115; in general relativity theory, 

6; internal infi nity in, 246–49, 247; 

invariant interval in, 33–36, 54–58, 

232–33; light cone idea, 42–48; spa-

ghettifi cation, 107–8

special theory of relativity: absolute and 

relative concepts, 42–47; accelera-

tion of matter through speed of light 

prohibited by, 63–64; backward time 

travel and, 6; clocks and, 49–52; curved 

spacetime and, 182; fi rst principle, 

30–31; forward time travel and, 4–5, 

58–60; inertial frames of reference 

in, 96–97; “massless” particles and, 

40–41, 59–60; second principle, 30; 

superluminal travel as violation of, 2, 

5–6, 39–40, 90, 117; tachyon travel and, 

66–68; time dilation eff ect and, 221, 

236–40; twin paradox and, 52–54, 119, 

126–29, 127

spectral lines, 164

speed of light: early research on, 22–23; 

Lorentz transformations and, 33; Max-

well’s discovery of, 24–25; Michelson-

Morley experiment, 26–30; reference 

frame for, 25; second principle of 

relativity and, 30, 37–38, 90; value 

of, 1; warp bubble circumvention of, 

117–18

speed of sound, 2, 25–26

squeezed states of light, 165, 165–66

squeezed vacuum state, 166, 166–67

Stargate SG1, 6

Star Trek, 117, 181, 223; antimatter in, 159; 

time travel depicted in, 2

Star Trek Deep Space Nine, 6

Steinbeck, John, 10

Stern-Gerlach apparatus, 146–47



266 < Index

Sticklin, Marylee, 62–63

string theory, 75, 188, 215, 222

subatomic particles, forward time travel 

of, 5, 59–60

Sudarshan, E. C. G., 64, 66, 67

superluminal particles. See tachyons

superluminal reference frames, 68–71

superluminal travel; backward, 124–35, 

125, 194–95; chronology protection 

and, 194; concept of, 2; Einstein’s 

special theory of relativity and, 2, 5–6, 

39–40, 63–64; Krasnikov tube and, 7, 

122–24, 185–86; practical problems, 

221–23; of tachyons, 63–66, 215; twin 

paradox and, 53–54, 126–29, 127; 

through warp bubbles, 7, 117–21; 

through wormholes, 112–17, 

113–14

supernova explosions, 105–6

tachyons, 63–68; decline of interest in, 

74–75; directionality problem, 69–71; 

experimental evidence for, 71–75; 

explanation of, 63–64; paradoxes and, 

64–66; science fi ction depiction, 67n1; 

string theory and, 75, 215; superlumi-

nal reference frames and, 68–71, 126

Targ, Russell, 223n2

Taylor, Brett, 184

Taylor, E., Spacetime Physics (with Wheeler), 

47–48

test fi elds, 178

thermodynamics, laws of. See energy, 

conservation of; second law of 

thermodynamics

Thorne, Kip S.: Black Holes and Time Warps, 

114, 127; vacuum fl uctuation studies, 

189–91; “Wormholes, Time Machines, 

and the Weak Energy Condition” (with 

Morris and Yurtsever), 4, 177; worm-

holes investigated by, 114–17, 126–34, 

142, 183, 185

tidal forces, 95–99, 96, 97, 107–8, 116, 

119, 182n1, 183

time, measurement of, 16–21: Galilean 

transformations, 19–21; gravity and, 

99–101. See also clocks

time, perception of: diff erences from 

spatial perception, 11–12; external vs. 

internal time, 12–13; subjectivity of, 

10–11

time dilation eff ect, 50; avoidance in 

warp bubbles, 119; black hole orbit 

contrasted with, 6; explanation of, 5, 

49–52; gravitational, 129; impractical-

ity of, 59; via light clocks, 236–40; for 

muons, 60; near black holes, 106–7, 

111; possibility of travel, 221; ways of 

achieving, 53

“time gate” concept, 2

time machines: black holes used as, 109–

11; chronology protection and, 194; 

concept of, 3–4; cosmic string, 209, 

213–17, 214, 222–23; destruction and 

chronology protection, 189–95; exotic 

matter needed for, 7, 181, 208–9; Kras-

nikov tube used as, 124, 126, 186–87; 

Mallett’s model, 8–9, 200–9, 250–51; 

many worlds theory tested with, 

150–51; Ori model, 245–49; restric-

tions on, 218; in science fi ction, 11–16, 

53; warp bubbles used as, 7, 117–21, 

122–24, 126, 185–86; Wells’s depiction 

of, 11–16, 53, 61, 135; wormholes used 

as, 7, 112–17, 124–29, 137–44

time travel: consistency problems in, 

14–16, 132–34, 136, 140–44; meaning 

of, 5; practical problems, 221–23; “rate 

of travel” notion, 12; science fi ction 

depictions of, 2–4; speculations on, 9, 

218–23; superluminal travel and, 2–3; 

through wormholes, 13–14; Wells’s 

depiction of, 11–16. See also directional 

headings

time travel, backward, 3–4; “banana peel 

mechanism” idea, 7–8, 144–45, 154, 

157, 220; billiard ball experiment, 

129–35, 145, 151–52; common-sense 



Index > 267

objections to, 6; conservation of energy 

and, 134–35; paradoxes in, 4, 7–8, 

15–16, 52–58, 129–35, 136–45; parallel 

worlds idea, 8, 145–54; rotating cylin-

der idea, 8–9, 198, 199–209; slicing and 

dicing problem, 155–57; superluminal, 

124–35, 194–95; tachyons and, 64–68

time travel, forward, 4–7, 49–61; black 

holes and, 6; cryogenic sleep and, 

60–61; energy requirements for, 5, 

58–59; practical considerations and 

experiments, 58–60; reality of, 4–5; 

of subatomic particles, 5, 59–60; su-

perluminality and, 5–6; tachyons and, 

63–68; warp bubbles and, 117–21; 

wormholes and, 112–17

time travel horizon, 127–29, 190–93, 193, 

201, 242, 243–46, 247–49

time-reversal invariance, 77–79

Tipler, Frank, 168, 200, 204, 241n1

topological censorship theorem, 168–69

topological defects, 212–13

triangles, in curved space, 182

12 Monkeys (fi lm), 144

Twilight Zone, “No Time Like the Past” 

episode, 144

twin paradox, 52–57; explanation of, 

52–54; invariant interval and proper 

time, 54–58, 55, 58; muon experiment, 

60; reference frames and, 54; time dila-

tion eff ect and, 5, 53; wormhole time 

machine and, 126–29, 127

uncertainty principle, 86n5, 165–66, 

192. See also energy-time uncertainty 

principle

universe, expansion of, 87–88, 185, 189, 

210–11, 220

Urban, Doug, 178, 221–22

vacuum fl uctuations, 163–64, 166, 190–94

vacuum solutions, 103

Van Den Broeck, Chris, 186–87

van Stockum, W. J., 199–200, 201, 204, 206

Vilenkin, Alex, 211–12; Cosmic Strings and 

Other Topological Defects, 212

virtual particles in space. See vacuum 

fl uctuations

Visser, Matt, 179, 183, 184, 185, 187–88, 

191–92, 222–23; Lorentzian Wormholes, 

117

Wald, Bob, 124, 190, 191–92

warp bubbles, 117–21; “back-reaction” ef-

fect, 121; disadvantages of, 7, 119–21; 

exotic matter used in, 119, 185–86; 

explanation of, 6–7; impossibility of 

steering, 119–21, 120; Natário model, 

117, 187; as time machines, 7, 117–21, 

122–24, 126, 185–86

warp drives, 194; Alcubierre model, 6–7, 

117–21, 159, 185–86, 187; Krasnikov 

tube, 7, 122–24, 126, 186–87; quantum 

inequalities and, 170, 180, 185–86, 

219–20; reactionless, 187–88; restric-

tions on, 218; scientifi c studies, 4; 

on Star Trek, 2; types of, 6–7; Van Den 

Broeck model, 186–87

weak energy condition: cosmic strings 

and, 184; dark energy and, 189; exotic 

matter and, 158–59, 167; explanation 

of, 4, 115–16; null energy conditions 

compared with, 245; for test fi elds, 178; 

violations of, 187, 200n2. See also aver-

aged weak energy condition

Wells, H. G., The Time Machine, 11–16, 53, 

61, 135, 145

Wheeler, John, 102, 114, 184–85; Spacetime 

Physics (with Taylor), 47–48

white dwarf stars, 105, 106

Witt, Don, 168–69

wormholes, 113; Barcelo-Visser, 179, 185; 

concept of, 112–17; conservation of 

energy in, 134–35; cubical, 117, 184, 

222–23; current knowledge about, 7; 

double-hole time machine model, 124–

26; event horizon of, 114; exotic matter 

used in, 116–17, 184–85; grandfather 



268 < Index

paradox and, 130–34, 151–52; length 

scale describing, 183–84; NMCSF 

used in constructing, 179, 185, 189; 

nontraversable, 114; quantum inequali-

ties and, 170, 180, 183–85, 219–20; 

restrictions on, 218; science fi ction 

depictions of, 6; scientifi c investiga-

tion of, 6–7; single-hole time machine 

model, 126–29; size of, 183–84; super-

luminal travel through, 113–14; as time 

machines, 7, 112–17, 124–29, 137–44; 

traversable, 114–17, 168–69, 177–78; 

Visser-Kar-Dahich (VKD), 185; Visser’s 

ring of, 192–93, 222

Wüthrich, Christian, 248n4

Young, Thomas, 23–24

Yurtsever, Ulvi, 126–34; “Wormholes, 

Time Machines, and the Weak Energy 

Condition” (with Morris and Thorne), 

4, 177

wormholes (continued)




	Contents
	Preface
	Acknowledgments
	1. Introduction

	2. Time, Clocks, and Reference Frames

	3. Lorentz Transformations and Special Relativity

	4. The Light Cone

	5. Forward Time Travel and the Twin “Paradox”

	6. “Forward, into the Past”

	7. The Arrow of Time

	8. General Relativity: Curved Space and Warped Time

	9. Wormholes and Warp Bubbles: Beating the Light Barrier and Possible Time Machines
 
	10. Banana Peels and Parallel Worlds

	11. “Don’t Be So Negative”: Exotic Matter

	12. “To Boldly Go . . .”?

	13. Cylinders and Strings

	14. Epilogue

	Appendix 1: Derivation of the Galilean Velocity Transformations
	Appendix 2: Derivation of the Lorentz Transformations
	Appendix 3: Proof of the Invariance of the Spacetime Interval
	Appendix 4: Argument to Show the Orientation of the x',t' Axes Relative to the x,t Axes 
	Appendix 5: Time Dilation via Light Clocks
	Appendix 6: Hawking’s Theorem
	Appendix 7: Light Pipe in the Mallett Time Machine
	Bibliography
	Index

